diff options
author | Abseil Team <absl-team@google.com> | 2022-09-01 09:19:13 -0700 |
---|---|---|
committer | Copybara-Service <copybara-worker@google.com> | 2022-09-01 09:19:53 -0700 |
commit | 847fa56a5422c20a6f471e67ac0bca004ff5eac5 (patch) | |
tree | ca3c7f6dc33390e9e752932e3540404c743ca9b6 /absl/profiling/internal | |
parent | b308bc06514600e9dedc16442fa5099050090d94 (diff) |
Fix "unsafe narrowing" warnings in absl, 8/n.
Addresses failures with the following, in some files:
-Wshorten-64-to-32
-Wimplicit-int-conversion
-Wsign-compare
-Wsign-conversion
-Wtautological-unsigned-zero-compare
(This specific CL focuses on .cc files in */internal/.)
Bug: chromium:1292951
PiperOrigin-RevId: 471549854
Change-Id: Id685d0e4666212926f4e001b8ef4930b6a33a4cc
Diffstat (limited to 'absl/profiling/internal')
-rw-r--r-- | absl/profiling/internal/exponential_biased_test.cc | 20 |
1 files changed, 11 insertions, 9 deletions
diff --git a/absl/profiling/internal/exponential_biased_test.cc b/absl/profiling/internal/exponential_biased_test.cc index 6a6c317e..ebfbcad4 100644 --- a/absl/profiling/internal/exponential_biased_test.cc +++ b/absl/profiling/internal/exponential_biased_test.cc @@ -94,13 +94,14 @@ double AndersonDarlingPValue(int n, double z) { } double AndersonDarlingStatistic(const std::vector<double>& random_sample) { - int n = random_sample.size(); + size_t n = random_sample.size(); double ad_sum = 0; - for (int i = 0; i < n; i++) { + for (size_t i = 0; i < n; i++) { ad_sum += (2 * i + 1) * std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); } - double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum; + const auto n_as_double = static_cast<double>(n); + double ad_statistic = -n_as_double - 1 / n_as_double * ad_sum; return ad_statistic; } @@ -111,14 +112,15 @@ double AndersonDarlingStatistic(const std::vector<double>& random_sample) { // Marsaglia and Marsaglia for details. double AndersonDarlingTest(const std::vector<double>& random_sample) { double ad_statistic = AndersonDarlingStatistic(random_sample); - double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); + double p = AndersonDarlingPValue(static_cast<int>(random_sample.size()), + ad_statistic); return p; } TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) { ExponentialBiased eb; for (int runs = 0; runs < 10; ++runs) { - for (int flips = eb.GetSkipCount(1); flips > 0; --flips) { + for (int64_t flips = eb.GetSkipCount(1); flips > 0; --flips) { printf("head..."); } printf("tail\n"); @@ -132,7 +134,7 @@ TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) { TEST(ExponentialBiasedTest, SampleDemoWithStride) { ExponentialBiased eb; - int stride = eb.GetStride(10); + int64_t stride = eb.GetStride(10); int samples = 0; for (int i = 0; i < 10000000; ++i) { if (--stride == 0) { @@ -147,7 +149,7 @@ TEST(ExponentialBiasedTest, SampleDemoWithStride) { // Testing that NextRandom generates uniform random numbers. Applies the // Anderson-Darling test for uniformity TEST(ExponentialBiasedTest, TestNextRandom) { - for (auto n : std::vector<int>({ + for (auto n : std::vector<size_t>({ 10, // Check short-range correlation 100, 1000, 10000 // Make sure there's no systemic error @@ -161,7 +163,7 @@ TEST(ExponentialBiasedTest, TestNextRandom) { } std::vector<uint64_t> int_random_sample(n); // Collect samples - for (int i = 0; i < n; i++) { + for (size_t i = 0; i < n; i++) { int_random_sample[i] = x; x = ExponentialBiased::NextRandom(x); } @@ -169,7 +171,7 @@ TEST(ExponentialBiasedTest, TestNextRandom) { std::sort(int_random_sample.begin(), int_random_sample.end()); std::vector<double> random_sample(n); // Convert them to uniform randoms (in the range [0,1]) - for (int i = 0; i < n; i++) { + for (size_t i = 0; i < n; i++) { random_sample[i] = static_cast<double>(int_random_sample[i]) / max_prng_value; } |