summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGravatar Abseil Team <absl-team@google.com>2020-09-01 09:39:43 -0700
committerGravatar Mark Barolak <mbar@google.com>2020-09-01 15:41:52 -0400
commit0e9921b75a0fdd639a504ec8443fc1fe801becd7 (patch)
tree7e1cc238c43f7b31e7a5f0bcb3c8536ee29d55a6
parenta4cbb5f698c42845aab6a6d6318290205e6c5baf (diff)
Export of internal Abseil changes
-- 23500704dd7c2642fad49f88c07ce41ebaab12e4 by Abseil Team <absl-team@google.com>: Change fetch_add() to store(1 + load()) As there is only one concurrent writer to the Info struct, we can avoid using the more expensive fetch_add() function. PiperOrigin-RevId: 329523785 -- 79e5018dba2e117ad89b76367165a604b3f24045 by Abseil Team <absl-team@google.com>: Record rehash count in hashtablez This will help identify which containers could benefit from a reserve call. PiperOrigin-RevId: 329510552 -- e327e54b805d67556f934fa7f7dc2d4e72fa066a by Abseil Team <absl-team@google.com>: Fix -Wsign-compare issues. These lines could theoretically have overflowed in cases of very large stack traces etc. Very unlikely, but this was causing warnings when built with -Wsign-compare, which we intend to enable with Chromium. In none of these three cases is it trivial to switch to a range-based for loop. PiperOrigin-RevId: 329415195 -- 08aca2fc75e8b3ad1201849987b64148fe48f283 by Xiaoyi Zhang <zhangxy@google.com>: Release absl::StatusOr. PiperOrigin-RevId: 329353348 -- bf4d2a7f8b089e2adf14d32b0e39de0a981005c3 by Xiaoyi Zhang <zhangxy@google.com>: Internal change PiperOrigin-RevId: 329337031 -- 42fa7d2fb993bbfc344954227cf1eeb801eca065 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 329099807 GitOrigin-RevId: 23500704dd7c2642fad49f88c07ce41ebaab12e4 Change-Id: I6713e4ca3bb0ab2ced5e487827ae036ab8ac61f1
-rw-r--r--CMake/AbseilDll.cmake3
-rw-r--r--absl/container/internal/hashtablez_sampler.cc1
-rw-r--r--absl/container/internal/hashtablez_sampler.h15
-rw-r--r--absl/container/internal/hashtablez_sampler_test.cc3
-rw-r--r--absl/status/BUILD.bazel36
-rw-r--r--absl/status/CMakeLists.txt33
-rw-r--r--absl/status/internal/statusor_internal.h399
-rw-r--r--absl/status/status.cc4
-rw-r--r--absl/status/statusor.cc71
-rw-r--r--absl/status/statusor.h670
-rw-r--r--absl/status/statusor_test.cc1800
11 files changed, 3031 insertions, 4 deletions
diff --git a/CMake/AbseilDll.cmake b/CMake/AbseilDll.cmake
index 7958ace7..cf6a8c9a 100644
--- a/CMake/AbseilDll.cmake
+++ b/CMake/AbseilDll.cmake
@@ -175,8 +175,11 @@ set(ABSL_INTERNAL_DLL_FILES
"random/uniform_real_distribution.h"
"random/zipf_distribution.h"
"status/internal/status_internal.h"
+ "status/internal/statusor_internal.h"
"status/status.h"
"status/status.cc"
+ "status/statusor.h"
+ "status/statusor.cc"
"status/status_payload_printer.h"
"status/status_payload_printer.cc"
"strings/ascii.cc"
diff --git a/absl/container/internal/hashtablez_sampler.cc b/absl/container/internal/hashtablez_sampler.cc
index 886524f1..e4484fbb 100644
--- a/absl/container/internal/hashtablez_sampler.cc
+++ b/absl/container/internal/hashtablez_sampler.cc
@@ -67,6 +67,7 @@ void HashtablezInfo::PrepareForSampling() {
capacity.store(0, std::memory_order_relaxed);
size.store(0, std::memory_order_relaxed);
num_erases.store(0, std::memory_order_relaxed);
+ num_rehashes.store(0, std::memory_order_relaxed);
max_probe_length.store(0, std::memory_order_relaxed);
total_probe_length.store(0, std::memory_order_relaxed);
hashes_bitwise_or.store(0, std::memory_order_relaxed);
diff --git a/absl/container/internal/hashtablez_sampler.h b/absl/container/internal/hashtablez_sampler.h
index e140ee00..b2a30c9a 100644
--- a/absl/container/internal/hashtablez_sampler.h
+++ b/absl/container/internal/hashtablez_sampler.h
@@ -73,6 +73,7 @@ struct HashtablezInfo {
std::atomic<size_t> capacity;
std::atomic<size_t> size;
std::atomic<size_t> num_erases;
+ std::atomic<size_t> num_rehashes;
std::atomic<size_t> max_probe_length;
std::atomic<size_t> total_probe_length;
std::atomic<size_t> hashes_bitwise_or;
@@ -105,6 +106,11 @@ inline void RecordRehashSlow(HashtablezInfo* info, size_t total_probe_length) {
#endif
info->total_probe_length.store(total_probe_length, std::memory_order_relaxed);
info->num_erases.store(0, std::memory_order_relaxed);
+ // There is only one concurrent writer, so `load` then `store` is sufficient
+ // instead of using `fetch_add`.
+ info->num_rehashes.store(
+ 1 + info->num_rehashes.load(std::memory_order_relaxed),
+ std::memory_order_relaxed);
}
inline void RecordStorageChangedSlow(HashtablezInfo* info, size_t size,
@@ -113,7 +119,8 @@ inline void RecordStorageChangedSlow(HashtablezInfo* info, size_t size,
info->capacity.store(capacity, std::memory_order_relaxed);
if (size == 0) {
// This is a clear, reset the total/num_erases too.
- RecordRehashSlow(info, 0);
+ info->total_probe_length.store(0, std::memory_order_relaxed);
+ info->num_erases.store(0, std::memory_order_relaxed);
}
}
@@ -122,7 +129,11 @@ void RecordInsertSlow(HashtablezInfo* info, size_t hash,
inline void RecordEraseSlow(HashtablezInfo* info) {
info->size.fetch_sub(1, std::memory_order_relaxed);
- info->num_erases.fetch_add(1, std::memory_order_relaxed);
+ // There is only one concurrent writer, so `load` then `store` is sufficient
+ // instead of using `fetch_add`.
+ info->num_erases.store(
+ 1 + info->num_erases.load(std::memory_order_relaxed),
+ std::memory_order_relaxed);
}
HashtablezInfo* SampleSlow(int64_t* next_sample);
diff --git a/absl/container/internal/hashtablez_sampler_test.cc b/absl/container/internal/hashtablez_sampler_test.cc
index b4c4ff92..04a26cb7 100644
--- a/absl/container/internal/hashtablez_sampler_test.cc
+++ b/absl/container/internal/hashtablez_sampler_test.cc
@@ -76,6 +76,7 @@ TEST(HashtablezInfoTest, PrepareForSampling) {
EXPECT_EQ(info.capacity.load(), 0);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 0);
+ EXPECT_EQ(info.num_rehashes.load(), 0);
EXPECT_EQ(info.max_probe_length.load(), 0);
EXPECT_EQ(info.total_probe_length.load(), 0);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0);
@@ -95,6 +96,7 @@ TEST(HashtablezInfoTest, PrepareForSampling) {
EXPECT_EQ(info.capacity.load(), 0);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 0);
+ EXPECT_EQ(info.num_rehashes.load(), 0);
EXPECT_EQ(info.max_probe_length.load(), 0);
EXPECT_EQ(info.total_probe_length.load(), 0);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0);
@@ -167,6 +169,7 @@ TEST(HashtablezInfoTest, RecordRehash) {
EXPECT_EQ(info.size.load(), 2);
EXPECT_EQ(info.total_probe_length.load(), 3);
EXPECT_EQ(info.num_erases.load(), 0);
+ EXPECT_EQ(info.num_rehashes.load(), 1);
}
#if defined(ABSL_HASHTABLEZ_SAMPLE)
diff --git a/absl/status/BUILD.bazel b/absl/status/BUILD.bazel
index 81fa46c2..189bd73d 100644
--- a/absl/status/BUILD.bazel
+++ b/absl/status/BUILD.bazel
@@ -65,3 +65,39 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
+
+cc_library(
+ name = "statusor",
+ srcs = [
+ "internal/statusor_internal.h",
+ "statusor.cc",
+ ],
+ hdrs = [
+ "statusor.h",
+ ],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":status",
+ "//absl/base:core_headers",
+ "//absl/base:raw_logging_internal",
+ "//absl/meta:type_traits",
+ "//absl/strings",
+ "//absl/types:variant",
+ "//absl/utility",
+ ],
+)
+
+cc_test(
+ name = "statusor_test",
+ size = "small",
+ srcs = ["statusor_test.cc"],
+ deps = [
+ ":status",
+ ":statusor",
+ "//absl/base",
+ "//absl/memory",
+ "//absl/types:any",
+ "//absl/utility",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
diff --git a/absl/status/CMakeLists.txt b/absl/status/CMakeLists.txt
index b48989d1..66728551 100644
--- a/absl/status/CMakeLists.txt
+++ b/absl/status/CMakeLists.txt
@@ -52,3 +52,36 @@ absl_cc_test(
absl::strings
gmock_main
)
+
+absl_cc_library(
+ NAME
+ statusor
+ HDRS
+ "statusor.h"
+ SRCS
+ "statusor.cc"
+ "internal/statusor_internal.h"
+ COPTS
+ ${ABSL_DEFAULT_COPTS}
+ DEPS
+ absl::core_headers
+ absl::raw_logging_internal
+ absl::type_traits
+ absl::strings
+ absl::utility
+ absl::variant
+ PUBLIC
+)
+
+absl_cc_test(
+ NAME
+ statusor_test
+ SRCS
+ "statusor_test.cc"
+ COPTS
+ ${ABSL_TEST_COPTS}
+ DEPS
+ absl::status
+ absl::statusor
+ gmock_main
+)
diff --git a/absl/status/internal/statusor_internal.h b/absl/status/internal/statusor_internal.h
new file mode 100644
index 00000000..96e41da5
--- /dev/null
+++ b/absl/status/internal/statusor_internal.h
@@ -0,0 +1,399 @@
+// Copyright 2020 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#ifndef ABSL_STATUS_INTERNAL_STATUSOR_INTERNAL_H_
+#define ABSL_STATUS_INTERNAL_STATUSOR_INTERNAL_H_
+
+#include <type_traits>
+#include <utility>
+
+#include "absl/meta/type_traits.h"
+#include "absl/status/status.h"
+#include "absl/utility/utility.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+
+template <typename T>
+class ABSL_MUST_USE_RESULT StatusOr;
+
+namespace internal_statusor {
+
+// Detects whether `U` has conversion operator to `StatusOr<T>`, i.e. `operator
+// StatusOr<T>()`.
+template <typename T, typename U, typename = void>
+struct HasConversionOperatorToStatusOr : std::false_type {};
+
+template <typename T, typename U>
+void test(char (*)[sizeof(std::declval<U>().operator absl::StatusOr<T>())]);
+
+template <typename T, typename U>
+struct HasConversionOperatorToStatusOr<T, U, decltype(test<T, U>(0))>
+ : std::true_type {};
+
+// Detects whether `T` is constructible or convertible from `StatusOr<U>`.
+template <typename T, typename U>
+using IsConstructibleOrConvertibleFromStatusOr =
+ absl::disjunction<std::is_constructible<T, StatusOr<U>&>,
+ std::is_constructible<T, const StatusOr<U>&>,
+ std::is_constructible<T, StatusOr<U>&&>,
+ std::is_constructible<T, const StatusOr<U>&&>,
+ std::is_convertible<StatusOr<U>&, T>,
+ std::is_convertible<const StatusOr<U>&, T>,
+ std::is_convertible<StatusOr<U>&&, T>,
+ std::is_convertible<const StatusOr<U>&&, T>>;
+
+// Detects whether `T` is constructible or convertible or assignable from
+// `StatusOr<U>`.
+template <typename T, typename U>
+using IsConstructibleOrConvertibleOrAssignableFromStatusOr =
+ absl::disjunction<IsConstructibleOrConvertibleFromStatusOr<T, U>,
+ std::is_assignable<T&, StatusOr<U>&>,
+ std::is_assignable<T&, const StatusOr<U>&>,
+ std::is_assignable<T&, StatusOr<U>&&>,
+ std::is_assignable<T&, const StatusOr<U>&&>>;
+
+// Detects whether direct initializing `StatusOr<T>` from `U` is ambiguous, i.e.
+// when `U` is `StatusOr<V>` and `T` is constructible or convertible from `V`.
+template <typename T, typename U>
+struct IsDirectInitializationAmbiguous
+ : public absl::conditional_t<
+ std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
+ U>::value,
+ std::false_type,
+ IsDirectInitializationAmbiguous<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>> {};
+
+template <typename T, typename V>
+struct IsDirectInitializationAmbiguous<T, absl::StatusOr<V>>
+ : public IsConstructibleOrConvertibleFromStatusOr<T, V> {};
+
+// Checks against the constraints of the direction initialization, i.e. when
+// `StatusOr<T>::StatusOr(U&&)` should participate in overload resolution.
+template <typename T, typename U>
+using IsDirectInitializationValid = absl::disjunction<
+ // Short circuits if T is basically U.
+ std::is_same<T, absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ absl::negation<absl::disjunction<
+ std::is_same<absl::StatusOr<T>,
+ absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ std::is_same<absl::Status,
+ absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ std::is_same<absl::in_place_t,
+ absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ IsDirectInitializationAmbiguous<T, U>>>>;
+
+// This trait detects whether `StatusOr<T>::operator=(U&&)` is ambiguous, which
+// is equivalent to whether all the following conditions are met:
+// 1. `U` is `StatusOr<V>`.
+// 2. `T` is constructible and assignable from `V`.
+// 3. `T` is constructible and assignable from `U` (i.e. `StatusOr<V>`).
+// For example, the following code is considered ambiguous:
+// (`T` is `bool`, `U` is `StatusOr<bool>`, `V` is `bool`)
+// StatusOr<bool> s1 = true; // s1.ok() && s1.ValueOrDie() == true
+// StatusOr<bool> s2 = false; // s2.ok() && s2.ValueOrDie() == false
+// s1 = s2; // ambiguous, `s1 = s2.ValueOrDie()` or `s1 = bool(s2)`?
+template <typename T, typename U>
+struct IsForwardingAssignmentAmbiguous
+ : public absl::conditional_t<
+ std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
+ U>::value,
+ std::false_type,
+ IsForwardingAssignmentAmbiguous<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>> {};
+
+template <typename T, typename U>
+struct IsForwardingAssignmentAmbiguous<T, absl::StatusOr<U>>
+ : public IsConstructibleOrConvertibleOrAssignableFromStatusOr<T, U> {};
+
+// Checks against the constraints of the forwarding assignment, i.e. whether
+// `StatusOr<T>::operator(U&&)` should participate in overload resolution.
+template <typename T, typename U>
+using IsForwardingAssignmentValid = absl::disjunction<
+ // Short circuits if T is basically U.
+ std::is_same<T, absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ absl::negation<absl::disjunction<
+ std::is_same<absl::StatusOr<T>,
+ absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ std::is_same<absl::Status,
+ absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ std::is_same<absl::in_place_t,
+ absl::remove_cv_t<absl::remove_reference_t<U>>>,
+ IsForwardingAssignmentAmbiguous<T, U>>>>;
+
+class Helper {
+ public:
+ // Move type-agnostic error handling to the .cc.
+ static void HandleInvalidStatusCtorArg(Status*);
+ static void Crash(const absl::Status& status);
+};
+
+// Construct an instance of T in `p` through placement new, passing Args... to
+// the constructor.
+// This abstraction is here mostly for the gcc performance fix.
+template <typename T, typename... Args>
+void PlacementNew(void* p, Args&&... args) {
+#if defined(__GNUC__) && !defined(__clang__)
+ // Teach gcc that 'p' cannot be null, fixing code size issues.
+ if (p == nullptr) __builtin_unreachable();
+#endif
+ new (p) T(std::forward<Args>(args)...);
+}
+
+// Helper base class to hold the data and all operations.
+// We move all this to a base class to allow mixing with the appropriate
+// TraitsBase specialization.
+template <typename T>
+class StatusOrData {
+ template <typename U>
+ friend class StatusOrData;
+
+ public:
+ StatusOrData() = delete;
+
+ StatusOrData(const StatusOrData& other) {
+ if (other.ok()) {
+ MakeValue(other.data_);
+ MakeStatus();
+ } else {
+ MakeStatus(other.status_);
+ }
+ }
+
+ StatusOrData(StatusOrData&& other) noexcept {
+ if (other.ok()) {
+ MakeValue(std::move(other.data_));
+ MakeStatus();
+ } else {
+ MakeStatus(std::move(other.status_));
+ }
+ }
+
+ template <typename U>
+ explicit StatusOrData(const StatusOrData<U>& other) {
+ if (other.ok()) {
+ MakeValue(other.data_);
+ MakeStatus();
+ } else {
+ MakeStatus(other.status_);
+ }
+ }
+
+ template <typename U>
+ explicit StatusOrData(StatusOrData<U>&& other) {
+ if (other.ok()) {
+ MakeValue(std::move(other.data_));
+ MakeStatus();
+ } else {
+ MakeStatus(std::move(other.status_));
+ }
+ }
+
+ template <typename... Args>
+ explicit StatusOrData(absl::in_place_t, Args&&... args)
+ : data_(std::forward<Args>(args)...) {
+ MakeStatus();
+ }
+
+ explicit StatusOrData(const T& value) : data_(value) {
+ MakeStatus();
+ }
+ explicit StatusOrData(T&& value) : data_(std::move(value)) {
+ MakeStatus();
+ }
+
+ template <typename U,
+ absl::enable_if_t<std::is_constructible<absl::Status, U&&>::value,
+ int> = 0>
+ explicit StatusOrData(U&& v) : status_(v) {
+ EnsureNotOk();
+ }
+
+ StatusOrData& operator=(const StatusOrData& other) {
+ if (this == &other) return *this;
+ if (other.ok())
+ Assign(other.data_);
+ else
+ AssignStatus(other.status_);
+ return *this;
+ }
+
+ StatusOrData& operator=(StatusOrData&& other) {
+ if (this == &other) return *this;
+ if (other.ok())
+ Assign(std::move(other.data_));
+ else
+ AssignStatus(std::move(other.status_));
+ return *this;
+ }
+
+ ~StatusOrData() {
+ if (ok()) {
+ status_.~Status();
+ data_.~T();
+ } else {
+ status_.~Status();
+ }
+ }
+
+ template <typename U>
+ void Assign(U&& value) {
+ if (ok()) {
+ data_ = std::forward<U>(value);
+ } else {
+ MakeValue(std::forward<U>(value));
+ status_ = OkStatus();
+ }
+ }
+
+ template <typename U>
+ void AssignStatus(U&& v) {
+ Clear();
+ status_ = static_cast<absl::Status>(std::forward<U>(v));
+ EnsureNotOk();
+ }
+
+ bool ok() const { return status_.ok(); }
+
+ protected:
+ // status_ will always be active after the constructor.
+ // We make it a union to be able to initialize exactly how we need without
+ // waste.
+ // Eg. in the copy constructor we use the default constructor of Status in
+ // the ok() path to avoid an extra Ref call.
+ union {
+ Status status_;
+ };
+
+ // data_ is active iff status_.ok()==true
+ struct Dummy {};
+ union {
+ // When T is const, we need some non-const object we can cast to void* for
+ // the placement new. dummy_ is that object.
+ Dummy dummy_;
+ T data_;
+ };
+
+ void Clear() {
+ if (ok()) data_.~T();
+ }
+
+ void EnsureOk() const {
+ if (ABSL_PREDICT_FALSE(!ok())) Helper::Crash(status_);
+ }
+
+ void EnsureNotOk() {
+ if (ABSL_PREDICT_FALSE(ok())) Helper::HandleInvalidStatusCtorArg(&status_);
+ }
+
+ // Construct the value (ie. data_) through placement new with the passed
+ // argument.
+ template <typename... Arg>
+ void MakeValue(Arg&&... arg) {
+ internal_statusor::PlacementNew<T>(&dummy_, std::forward<Arg>(arg)...);
+ }
+
+ // Construct the status (ie. status_) through placement new with the passed
+ // argument.
+ template <typename... Args>
+ void MakeStatus(Args&&... args) {
+ internal_statusor::PlacementNew<Status>(&status_,
+ std::forward<Args>(args)...);
+ }
+};
+
+// Helper base classes to allow implicitly deleted constructors and assignment
+// operators in `StatusOr`. For example, `CopyCtorBase` will explicitly delete
+// the copy constructor when T is not copy constructible and `StatusOr` will
+// inherit that behavior implicitly.
+template <typename T, bool = std::is_copy_constructible<T>::value>
+struct CopyCtorBase {
+ CopyCtorBase() = default;
+ CopyCtorBase(const CopyCtorBase&) = default;
+ CopyCtorBase(CopyCtorBase&&) = default;
+ CopyCtorBase& operator=(const CopyCtorBase&) = default;
+ CopyCtorBase& operator=(CopyCtorBase&&) = default;
+};
+
+template <typename T>
+struct CopyCtorBase<T, false> {
+ CopyCtorBase() = default;
+ CopyCtorBase(const CopyCtorBase&) = delete;
+ CopyCtorBase(CopyCtorBase&&) = default;
+ CopyCtorBase& operator=(const CopyCtorBase&) = default;
+ CopyCtorBase& operator=(CopyCtorBase&&) = default;
+};
+
+template <typename T, bool = std::is_move_constructible<T>::value>
+struct MoveCtorBase {
+ MoveCtorBase() = default;
+ MoveCtorBase(const MoveCtorBase&) = default;
+ MoveCtorBase(MoveCtorBase&&) = default;
+ MoveCtorBase& operator=(const MoveCtorBase&) = default;
+ MoveCtorBase& operator=(MoveCtorBase&&) = default;
+};
+
+template <typename T>
+struct MoveCtorBase<T, false> {
+ MoveCtorBase() = default;
+ MoveCtorBase(const MoveCtorBase&) = default;
+ MoveCtorBase(MoveCtorBase&&) = delete;
+ MoveCtorBase& operator=(const MoveCtorBase&) = default;
+ MoveCtorBase& operator=(MoveCtorBase&&) = default;
+};
+
+template <typename T, bool = std::is_copy_constructible<T>::value&&
+ std::is_copy_assignable<T>::value>
+struct CopyAssignBase {
+ CopyAssignBase() = default;
+ CopyAssignBase(const CopyAssignBase&) = default;
+ CopyAssignBase(CopyAssignBase&&) = default;
+ CopyAssignBase& operator=(const CopyAssignBase&) = default;
+ CopyAssignBase& operator=(CopyAssignBase&&) = default;
+};
+
+template <typename T>
+struct CopyAssignBase<T, false> {
+ CopyAssignBase() = default;
+ CopyAssignBase(const CopyAssignBase&) = default;
+ CopyAssignBase(CopyAssignBase&&) = default;
+ CopyAssignBase& operator=(const CopyAssignBase&) = delete;
+ CopyAssignBase& operator=(CopyAssignBase&&) = default;
+};
+
+template <typename T, bool = std::is_move_constructible<T>::value&&
+ std::is_move_assignable<T>::value>
+struct MoveAssignBase {
+ MoveAssignBase() = default;
+ MoveAssignBase(const MoveAssignBase&) = default;
+ MoveAssignBase(MoveAssignBase&&) = default;
+ MoveAssignBase& operator=(const MoveAssignBase&) = default;
+ MoveAssignBase& operator=(MoveAssignBase&&) = default;
+};
+
+template <typename T>
+struct MoveAssignBase<T, false> {
+ MoveAssignBase() = default;
+ MoveAssignBase(const MoveAssignBase&) = default;
+ MoveAssignBase(MoveAssignBase&&) = default;
+ MoveAssignBase& operator=(const MoveAssignBase&) = default;
+ MoveAssignBase& operator=(MoveAssignBase&&) = delete;
+};
+
+ABSL_ATTRIBUTE_NORETURN void ThrowBadStatusOrAccess(absl::Status status);
+
+} // namespace internal_statusor
+ABSL_NAMESPACE_END
+} // namespace absl
+
+#endif // ABSL_STATUS_INTERNAL_STATUSOR_INTERNAL_H_
diff --git a/absl/status/status.cc b/absl/status/status.cc
index 0a655736..a27fd8b3 100644
--- a/absl/status/status.cc
+++ b/absl/status/status.cc
@@ -78,7 +78,7 @@ static int FindPayloadIndexByUrl(const Payloads* payloads,
absl::string_view type_url) {
if (payloads == nullptr) return -1;
- for (int i = 0; i < payloads->size(); ++i) {
+ for (size_t i = 0; i < payloads->size(); ++i) {
if ((*payloads)[i].type_url == type_url) return i;
}
@@ -167,7 +167,7 @@ void Status::ForEachPayload(
bool in_reverse =
payloads->size() > 1 && reinterpret_cast<uintptr_t>(payloads) % 13 > 6;
- for (int index = 0; index < payloads->size(); ++index) {
+ for (size_t index = 0; index < payloads->size(); ++index) {
const auto& elem =
(*payloads)[in_reverse ? payloads->size() - 1 - index : index];
diff --git a/absl/status/statusor.cc b/absl/status/statusor.cc
new file mode 100644
index 00000000..b954b45e
--- /dev/null
+++ b/absl/status/statusor.cc
@@ -0,0 +1,71 @@
+// Copyright 2020 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#include "absl/status/statusor.h"
+
+#include <cstdlib>
+#include <utility>
+
+#include "absl/base/internal/raw_logging.h"
+#include "absl/status/status.h"
+#include "absl/strings/str_cat.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+
+BadStatusOrAccess::BadStatusOrAccess(absl::Status status)
+ : status_(std::move(status)) {}
+
+BadStatusOrAccess::~BadStatusOrAccess() = default;
+const char* BadStatusOrAccess::what() const noexcept {
+ return "Bad StatusOr access";
+}
+
+const absl::Status& BadStatusOrAccess::status() const { return status_; }
+
+namespace internal_statusor {
+
+void Helper::HandleInvalidStatusCtorArg(absl::Status* status) {
+ const char* kMessage =
+ "An OK status is not a valid constructor argument to StatusOr<T>";
+#ifdef NDEBUG
+ ABSL_INTERNAL_LOG(ERROR, kMessage);
+#else
+ ABSL_INTERNAL_LOG(FATAL, kMessage);
+#endif
+ // In optimized builds, we will fall back to InternalError.
+ *status = absl::InternalError(kMessage);
+}
+
+void Helper::Crash(const absl::Status& status) {
+ ABSL_INTERNAL_LOG(
+ FATAL,
+ absl::StrCat("Attempting to fetch value instead of handling error ",
+ status.ToString()));
+}
+
+void ThrowBadStatusOrAccess(absl::Status status) {
+#ifdef ABSL_HAVE_EXCEPTIONS
+ throw absl::BadStatusOrAccess(std::move(status));
+#else
+ ABSL_INTERNAL_LOG(
+ FATAL,
+ absl::StrCat("Attempting to fetch value instead of handling error ",
+ status.ToString()));
+ std::abort();
+#endif
+}
+
+} // namespace internal_statusor
+ABSL_NAMESPACE_END
+} // namespace absl
diff --git a/absl/status/statusor.h b/absl/status/statusor.h
new file mode 100644
index 00000000..95f99f4d
--- /dev/null
+++ b/absl/status/statusor.h
@@ -0,0 +1,670 @@
+// Copyright 2020 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// StatusOr<T> is the union of a Status object and a T
+// object. StatusOr models the concept of an object that is either a
+// usable value, or an error Status explaining why such a value is
+// not present. To this end, StatusOr<T> does not allow its Status
+// value to be absl::OkStatus().
+//
+// The primary use-case for StatusOr<T> is as the return value of a
+// function which may fail.
+//
+// Example usage of a StatusOr<T>:
+//
+// StatusOr<Foo> result = DoBigCalculationThatCouldFail();
+// if (result.ok()) {
+// result->DoSomethingCool();
+// } else {
+// LOG(ERROR) << result.status();
+// }
+//
+// Example that is guaranteed to crash if the result holds no value:
+//
+// StatusOr<Foo> result = DoBigCalculationThatCouldFail();
+// const Foo& foo = result.value();
+// foo.DoSomethingCool();
+//
+// Example usage of a StatusOr<std::unique_ptr<T>>:
+//
+// StatusOr<std::unique_ptr<Foo>> result = FooFactory::MakeNewFoo(arg);
+// if (!result.ok()) { // Don't omit .ok()
+// LOG(ERROR) << result.status();
+// } else if (*result == nullptr) {
+// LOG(ERROR) << "Unexpected null pointer";
+// } else {
+// (*result)->DoSomethingCool();
+// }
+//
+// Example factory implementation returning StatusOr<T>:
+//
+// StatusOr<Foo> FooFactory::MakeFoo(int arg) {
+// if (arg <= 0) {
+// return absl::Status(absl::StatusCode::kInvalidArgument,
+// "Arg must be positive");
+// }
+// return Foo(arg);
+// }
+//
+// NULL POINTERS
+//
+// Historically StatusOr<T*> treated null pointers specially. This is no longer
+// true -- a StatusOr<T*> can be constructed from a null pointer like any other
+// pointer value, and the result will be that ok() returns true and value()
+// returns null.
+
+#ifndef ABSL_STATUS_STATUSOR_H_
+#define ABSL_STATUS_STATUSOR_H_
+
+#include <exception>
+#include <initializer_list>
+#include <new>
+#include <string>
+#include <type_traits>
+#include <utility>
+
+#include "absl/base/attributes.h"
+#include "absl/meta/type_traits.h"
+#include "absl/status/internal/statusor_internal.h"
+#include "absl/status/status.h"
+#include "absl/types/variant.h"
+#include "absl/utility/utility.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+class BadStatusOrAccess : public std::exception {
+ public:
+ explicit BadStatusOrAccess(absl::Status status);
+ ~BadStatusOrAccess() override;
+ const char* what() const noexcept override;
+ const absl::Status& status() const;
+
+ private:
+ absl::Status status_;
+};
+
+// Returned StatusOr objects may not be ignored.
+template <typename T>
+class ABSL_MUST_USE_RESULT StatusOr;
+
+template <typename T>
+class StatusOr : private internal_statusor::StatusOrData<T>,
+ private internal_statusor::CopyCtorBase<T>,
+ private internal_statusor::MoveCtorBase<T>,
+ private internal_statusor::CopyAssignBase<T>,
+ private internal_statusor::MoveAssignBase<T> {
+ template <typename U>
+ friend class StatusOr;
+
+ typedef internal_statusor::StatusOrData<T> Base;
+
+ public:
+ typedef T value_type;
+
+ // Constructs a new StatusOr with Status::UNKNOWN status. This is marked
+ // 'explicit' to try to catch cases like 'return {};', where people think
+ // absl::StatusOr<std::vector<int>> will be initialized with an empty vector,
+ // instead of a Status::UNKNOWN status.
+ explicit StatusOr();
+
+ // StatusOr<T> is copy constructible if T is copy constructible.
+ StatusOr(const StatusOr&) = default;
+ // StatusOr<T> is copy assignable if T is copy constructible and copy
+ // assignable.
+ StatusOr& operator=(const StatusOr&) = default;
+
+ // StatusOr<T> is move constructible if T is move constructible.
+ StatusOr(StatusOr&&) = default;
+ // StatusOr<T> is moveAssignable if T is move constructible and move
+ // assignable.
+ StatusOr& operator=(StatusOr&&) = default;
+
+ // Converting constructors from StatusOr<U>, when T is constructible from U.
+ // To avoid ambiguity, they are disabled if T is also constructible from
+ // StatusOr<U>. Explicit iff the corresponding construction of T from U is
+ // explicit.
+ template <
+ typename U,
+ absl::enable_if_t<
+ absl::conjunction<
+ absl::negation<std::is_same<T, U>>,
+ std::is_constructible<T, const U&>,
+ std::is_convertible<const U&, T>,
+ absl::negation<
+ internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
+ T, U>>>::value,
+ int> = 0>
+ StatusOr(const StatusOr<U>& other) // NOLINT
+ : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
+ template <
+ typename U,
+ absl::enable_if_t<
+ absl::conjunction<
+ absl::negation<std::is_same<T, U>>,
+ std::is_constructible<T, const U&>,
+ absl::negation<std::is_convertible<const U&, T>>,
+ absl::negation<
+ internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
+ T, U>>>::value,
+ int> = 0>
+ explicit StatusOr(const StatusOr<U>& other)
+ : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
+
+ template <
+ typename U,
+ absl::enable_if_t<
+ absl::conjunction<
+ absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
+ std::is_convertible<U&&, T>,
+ absl::negation<
+ internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
+ T, U>>>::value,
+ int> = 0>
+ StatusOr(StatusOr<U>&& other) // NOLINT
+ : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
+ template <
+ typename U,
+ absl::enable_if_t<
+ absl::conjunction<
+ absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
+ absl::negation<std::is_convertible<U&&, T>>,
+ absl::negation<
+ internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
+ T, U>>>::value,
+ int> = 0>
+ explicit StatusOr(StatusOr<U>&& other)
+ : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
+
+ // Conversion copy/move assignment operator, T must be constructible and
+ // assignable from U. Only enable if T cannot be directly assigned from
+ // StatusOr<U>.
+ template <
+ typename U,
+ absl::enable_if_t<
+ absl::conjunction<
+ absl::negation<std::is_same<T, U>>,
+ std::is_constructible<T, const U&>,
+ std::is_assignable<T, const U&>,
+ absl::negation<
+ internal_statusor::
+ IsConstructibleOrConvertibleOrAssignableFromStatusOr<
+ T, U>>>::value,
+ int> = 0>
+ StatusOr& operator=(const StatusOr<U>& other) {
+ this->Assign(other);
+ return *this;
+ }
+ template <
+ typename U,
+ absl::enable_if_t<
+ absl::conjunction<
+ absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
+ std::is_assignable<T, U&&>,
+ absl::negation<
+ internal_statusor::
+ IsConstructibleOrConvertibleOrAssignableFromStatusOr<
+ T, U>>>::value,
+ int> = 0>
+ StatusOr& operator=(StatusOr<U>&& other) {
+ this->Assign(std::move(other));
+ return *this;
+ }
+
+ // Constructs a new StatusOr with a non-ok status. After calling this
+ // constructor, this->ok() will be false and calls to value() will CHECK-fail.
+ // The constructor also takes any type `U` that is convertible to `Status`.
+ //
+ // NOTE: Not explicit - we want to use StatusOr<T> as a return
+ // value, so it is convenient and sensible to be able to do
+ // `return Status()` or `return ConvertibleToStatus()` when the return type
+ // is `StatusOr<T>`.
+ //
+ // REQUIRES: !Status(std::forward<U>(v)).ok(). This requirement is DCHECKed.
+ // In optimized builds, passing absl::OkStatus() here will have the effect
+ // of passing absl::StatusCode::kInternal as a fallback.
+ template <
+ typename U = absl::Status,
+ absl::enable_if_t<
+ absl::conjunction<
+ std::is_convertible<U&&, absl::Status>,
+ std::is_constructible<absl::Status, U&&>,
+ absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
+ absl::negation<std::is_same<absl::decay_t<U>, T>>,
+ absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
+ absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
+ T, U&&>>>::value,
+ int> = 0>
+ StatusOr(U&& v) : Base(std::forward<U>(v)) {}
+
+ template <
+ typename U = absl::Status,
+ absl::enable_if_t<
+ absl::conjunction<
+ absl::negation<std::is_convertible<U&&, absl::Status>>,
+ std::is_constructible<absl::Status, U&&>,
+ absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
+ absl::negation<std::is_same<absl::decay_t<U>, T>>,
+ absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
+ absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
+ T, U&&>>>::value,
+ int> = 0>
+ explicit StatusOr(U&& v) : Base(std::forward<U>(v)) {}
+
+ template <
+ typename U = absl::Status,
+ absl::enable_if_t<
+ absl::conjunction<
+ std::is_convertible<U&&, absl::Status>,
+ std::is_constructible<absl::Status, U&&>,
+ absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
+ absl::negation<std::is_same<absl::decay_t<U>, T>>,
+ absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
+ absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
+ T, U&&>>>::value,
+ int> = 0>
+ StatusOr& operator=(U&& v) {
+ this->AssignStatus(std::forward<U>(v));
+ return *this;
+ }
+
+ // Perfect-forwarding value assignment operator.
+ // If `*this` contains a `T` value before the call, the contained value is
+ // assigned from `std::forward<U>(v)`; Otherwise, it is directly-initialized
+ // from `std::forward<U>(v)`.
+ // This function does not participate in overload unless:
+ // 1. `std::is_constructible_v<T, U>` is true,
+ // 2. `std::is_assignable_v<T&, U>` is true.
+ // 3. `std::is_same_v<StatusOr<T>, std::remove_cvref_t<U>>` is false.
+ // 4. Assigning `U` to `T` is not ambiguous:
+ // If `U` is `StatusOr<V>` and `T` is constructible and assignable from
+ // both `StatusOr<V>` and `V`, the assignment is considered bug-prone and
+ // ambiguous thus will fail to compile. For example:
+ // StatusOr<bool> s1 = true; // s1.ok() && *s1 == true
+ // StatusOr<bool> s2 = false; // s2.ok() && *s2 == false
+ // s1 = s2; // ambiguous, `s1 = *s2` or `s1 = bool(s2)`?
+ template <
+ typename U = T,
+ typename = typename std::enable_if<absl::conjunction<
+ std::is_constructible<T, U&&>, std::is_assignable<T&, U&&>,
+ absl::disjunction<
+ std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>, T>,
+ absl::conjunction<
+ absl::negation<std::is_convertible<U&&, absl::Status>>,
+ absl::negation<internal_statusor::
+ HasConversionOperatorToStatusOr<T, U&&>>>>,
+ internal_statusor::IsForwardingAssignmentValid<T, U&&>>::value>::type>
+ StatusOr& operator=(U&& v) {
+ static_assert(
+ !absl::conjunction<
+ std::is_constructible<T, U&&>, std::is_assignable<T&, U&&>,
+ std::is_constructible<absl::Status, U&&>,
+ std::is_assignable<absl::Status&, U&&>,
+ absl::negation<std::is_same<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>>>::value,
+ "U can assign to both T and Status, will result in semantic change");
+ static_assert(
+ !absl::conjunction<
+ std::is_constructible<T, U&&>, std::is_assignable<T&, U&&>,
+ internal_statusor::HasConversionOperatorToStatusOr<T, U&&>,
+ absl::negation<std::is_same<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>>>::value,
+ "U can assign to T and convert to StatusOr<T>, will result in semantic "
+ "change");
+ this->Assign(std::forward<U>(v));
+ return *this;
+ }
+
+ // Constructs the inner value T in-place using the provided args, using the
+ // T(args...) constructor.
+ template <typename... Args>
+ explicit StatusOr(absl::in_place_t, Args&&... args);
+ template <typename U, typename... Args>
+ explicit StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
+ Args&&... args);
+
+ // Constructs the inner value T in-place using the provided args, using the
+ // T(U) (direct-initialization) constructor. Only valid if T can be
+ // constructed from a U. Can accept move or copy constructors. Explicit if
+ // U is not convertible to T. To avoid ambiguity, this is disabled if U is
+ // a StatusOr<J>, where J is convertible to T.
+ template <
+ typename U = T,
+ absl::enable_if_t<
+ absl::conjunction<
+ internal_statusor::IsDirectInitializationValid<T, U&&>,
+ std::is_constructible<T, U&&>, std::is_convertible<U&&, T>,
+ absl::disjunction<
+ std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
+ T>,
+ absl::conjunction<
+ absl::negation<std::is_convertible<U&&, absl::Status>>,
+ absl::negation<
+ internal_statusor::HasConversionOperatorToStatusOr<
+ T, U&&>>>>>::value,
+ int> = 0>
+ StatusOr(U&& u) // NOLINT
+ : StatusOr(absl::in_place, std::forward<U>(u)) {
+ static_assert(
+ !absl::conjunction<
+ std::is_convertible<U&&, T>, std::is_convertible<U&&, absl::Status>,
+ absl::negation<std::is_same<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>>>::value,
+ "U is convertible to both T and Status, will result in semantic "
+ "change");
+ static_assert(
+ !absl::conjunction<
+ std::is_convertible<U&&, T>,
+ internal_statusor::HasConversionOperatorToStatusOr<T, U&&>,
+ absl::negation<std::is_same<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>>>::value,
+ "U can construct T and convert to StatusOr<T>, will result in semantic "
+ "change");
+ }
+
+ template <
+ typename U = T,
+ absl::enable_if_t<
+ absl::conjunction<
+ internal_statusor::IsDirectInitializationValid<T, U&&>,
+ absl::disjunction<
+ std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
+ T>,
+ absl::conjunction<
+ absl::negation<std::is_constructible<absl::Status, U&&>>,
+ absl::negation<
+ internal_statusor::HasConversionOperatorToStatusOr<
+ T, U&&>>>>,
+ std::is_constructible<T, U&&>,
+ absl::negation<std::is_convertible<U&&, T>>>::value,
+ int> = 0>
+ explicit StatusOr(U&& u) // NOLINT
+ : StatusOr(absl::in_place, std::forward<U>(u)) {
+ static_assert(
+ !absl::conjunction<
+ std::is_constructible<T, U&&>,
+ std::is_constructible<absl::Status, U&&>,
+ absl::negation<std::is_same<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>>>::value,
+ "U can construct both T and Status, will result in semantic "
+ "change");
+ static_assert(
+ !absl::conjunction<
+ std::is_constructible<T, U&&>,
+ internal_statusor::HasConversionOperatorToStatusOr<T, U&&>,
+ absl::negation<std::is_same<
+ T, absl::remove_cv_t<absl::remove_reference_t<U>>>>>::value,
+ "U can construct T and convert to StatusOr<T>, will result in semantic "
+ "change");
+ }
+
+ // Returns this->status().ok()
+ ABSL_MUST_USE_RESULT bool ok() const { return this->status_.ok(); }
+
+ // Returns a reference to our status. If this contains a T, then
+ // returns absl::OkStatus().
+ const Status& status() const &;
+ Status status() &&;
+
+ // Returns a reference to the held value if `this->ok()`. Otherwise, throws
+ // `absl::BadStatusOrAccess` if exception is enabled, or `LOG(FATAL)` if
+ // exception is disabled.
+ // If you have already checked the status using `this->ok()`, you probably
+ // want to use `operator*()` or `operator->()` to access the value instead of
+ // `value`.
+ // Note: for value types that are cheap to copy, prefer simple code:
+ //
+ // T value = statusor.value();
+ //
+ // Otherwise, if the value type is expensive to copy, but can be left
+ // in the StatusOr, simply assign to a reference:
+ //
+ // T& value = statusor.value(); // or `const T&`
+ //
+ // Otherwise, if the value type supports an efficient move, it can be
+ // used as follows:
+ //
+ // T value = std::move(statusor).value();
+ //
+ // The `std::move` on statusor instead of on the whole expression enables
+ // warnings about possible uses of the statusor object after the move.
+ const T& value() const&;
+ T& value() &;
+ const T&& value() const&&;
+ T&& value() &&;
+
+ // Returns a reference to the current value.
+ //
+ // REQUIRES: this->ok() == true, otherwise the behavior is undefined.
+ //
+ // Use this->ok() to verify that there is a current value.
+ // Alternatively, see value() for a similar API that guarantees
+ // CHECK-failing if there is no current value.
+ const T& operator*() const&;
+ T& operator*() &;
+ const T&& operator*() const&&;
+ T&& operator*() &&;
+
+ // Returns a pointer to the current value.
+ //
+ // REQUIRES: this->ok() == true, otherwise the behavior is undefined.
+ //
+ // Use this->ok() to verify that there is a current value.
+ const T* operator->() const;
+ T* operator->();
+
+ // Returns the current value this->ok() == true. Otherwise constructs a value
+ // using `default_value`.
+ //
+ // Unlike `value`, this function returns by value, copying the current value
+ // if necessary. If the value type supports an efficient move, it can be used
+ // as follows:
+ //
+ // T value = std::move(statusor).value_or(def);
+ //
+ // Unlike with `value`, calling `std::move` on the result of `value_or` will
+ // still trigger a copy.
+ template <typename U>
+ T value_or(U&& default_value) const&;
+ template <typename U>
+ T value_or(U&& default_value) &&;
+
+ // Ignores any errors. This method does nothing except potentially suppress
+ // complaints from any tools that are checking that errors are not dropped on
+ // the floor.
+ void IgnoreError() const;
+
+ // Reconstructs the inner value T in-place using the provided args, using the
+ // T(args...) constructor. Returns reference to the reconstructed `T`.
+ template <typename... Args>
+ T& emplace(Args&&... args) {
+ if (ok()) {
+ this->Clear();
+ this->MakeValue(std::forward<Args>(args)...);
+ } else {
+ this->MakeValue(std::forward<Args>(args)...);
+ this->status_ = absl::OkStatus();
+ }
+ return this->data_;
+ }
+
+ template <
+ typename U, typename... Args,
+ absl::enable_if_t<
+ std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value,
+ int> = 0>
+ T& emplace(std::initializer_list<U> ilist, Args&&... args) {
+ if (ok()) {
+ this->Clear();
+ this->MakeValue(ilist, std::forward<Args>(args)...);
+ } else {
+ this->MakeValue(ilist, std::forward<Args>(args)...);
+ this->status_ = absl::OkStatus();
+ }
+ return this->data_;
+ }
+
+ private:
+ using internal_statusor::StatusOrData<T>::Assign;
+ template <typename U>
+ void Assign(const absl::StatusOr<U>& other);
+ template <typename U>
+ void Assign(absl::StatusOr<U>&& other);
+};
+
+template <typename T>
+bool operator==(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
+ if (lhs.ok() && rhs.ok()) return *lhs == *rhs;
+ return lhs.status() == rhs.status();
+}
+
+template <typename T>
+bool operator!=(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
+ return !(lhs == rhs);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Implementation details for StatusOr<T>
+
+// TODO(sbenza): avoid the string here completely.
+template <typename T>
+StatusOr<T>::StatusOr() : Base(Status(absl::StatusCode::kUnknown, "")) {}
+
+template <typename T>
+template <typename U>
+inline void StatusOr<T>::Assign(const StatusOr<U>& other) {
+ if (other.ok()) {
+ this->Assign(*other);
+ } else {
+ this->AssignStatus(other.status());
+ }
+}
+
+template <typename T>
+template <typename U>
+inline void StatusOr<T>::Assign(StatusOr<U>&& other) {
+ if (other.ok()) {
+ this->Assign(*std::move(other));
+ } else {
+ this->AssignStatus(std::move(other).status());
+ }
+}
+template <typename T>
+template <typename... Args>
+StatusOr<T>::StatusOr(absl::in_place_t, Args&&... args)
+ : Base(absl::in_place, std::forward<Args>(args)...) {}
+
+template <typename T>
+template <typename U, typename... Args>
+StatusOr<T>::StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
+ Args&&... args)
+ : Base(absl::in_place, ilist, std::forward<Args>(args)...) {}
+
+template <typename T>
+const Status& StatusOr<T>::status() const & { return this->status_; }
+template <typename T>
+Status StatusOr<T>::status() && {
+ return ok() ? OkStatus() : std::move(this->status_);
+}
+
+template <typename T>
+const T& StatusOr<T>::value() const& {
+ if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
+ return this->data_;
+}
+
+template <typename T>
+T& StatusOr<T>::value() & {
+ if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
+ return this->data_;
+}
+
+template <typename T>
+const T&& StatusOr<T>::value() const&& {
+ if (!this->ok()) {
+ internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
+ }
+ return std::move(this->data_);
+}
+
+template <typename T>
+T&& StatusOr<T>::value() && {
+ if (!this->ok()) {
+ internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
+ }
+ return std::move(this->data_);
+}
+
+template <typename T>
+const T& StatusOr<T>::operator*() const& {
+ this->EnsureOk();
+ return this->data_;
+}
+
+template <typename T>
+T& StatusOr<T>::operator*() & {
+ this->EnsureOk();
+ return this->data_;
+}
+
+template <typename T>
+const T&& StatusOr<T>::operator*() const&& {
+ this->EnsureOk();
+ return std::move(this->data_);
+}
+
+template <typename T>
+T&& StatusOr<T>::operator*() && {
+ this->EnsureOk();
+ return std::move(this->data_);
+}
+
+template <typename T>
+const T* StatusOr<T>::operator->() const {
+ this->EnsureOk();
+ return &this->data_;
+}
+
+template <typename T>
+T* StatusOr<T>::operator->() {
+ this->EnsureOk();
+ return &this->data_;
+}
+
+template <typename T>
+template <typename U>
+T StatusOr<T>::value_or(U&& default_value) const& {
+ if (ok()) {
+ return this->data_;
+ }
+ return std::forward<U>(default_value);
+}
+
+template <typename T>
+template <typename U>
+T StatusOr<T>::value_or(U&& default_value) && {
+ if (ok()) {
+ return std::move(this->data_);
+ }
+ return std::forward<U>(default_value);
+}
+
+template <typename T>
+void StatusOr<T>::IgnoreError() const {
+ // no-op
+}
+
+ABSL_NAMESPACE_END
+} // namespace absl
+
+#endif // ABSL_STATUS_STATUSOR_H_
diff --git a/absl/status/statusor_test.cc b/absl/status/statusor_test.cc
new file mode 100644
index 00000000..5e4b2687
--- /dev/null
+++ b/absl/status/statusor_test.cc
@@ -0,0 +1,1800 @@
+// Copyright 2020 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/status/statusor.h"
+
+#include <array>
+#include <initializer_list>
+#include <memory>
+#include <type_traits>
+#include <utility>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/casts.h"
+#include "absl/memory/memory.h"
+#include "absl/status/status.h"
+#include "absl/types/any.h"
+#include "absl/utility/utility.h"
+
+namespace {
+
+using ::testing::AllOf;
+using ::testing::AnyWith;
+using ::testing::ElementsAre;
+using ::testing::Field;
+using ::testing::Ne;
+using ::testing::Not;
+using ::testing::Pointee;
+using ::testing::VariantWith;
+
+#ifdef GTEST_HAS_STATUS_MATCHERS
+using ::testing::status::IsOk;
+using ::testing::status::IsOkAndHolds;
+#else // GTEST_HAS_STATUS_MATCHERS
+inline const ::absl::Status& GetStatus(const ::absl::Status& status) {
+ return status;
+}
+
+template <typename T>
+inline const ::absl::Status& GetStatus(const ::absl::StatusOr<T>& status) {
+ return status.status();
+}
+
+// Monomorphic implementation of matcher IsOkAndHolds(m). StatusOrType is a
+// reference to StatusOr<T>.
+template <typename StatusOrType>
+class IsOkAndHoldsMatcherImpl
+ : public ::testing::MatcherInterface<StatusOrType> {
+ public:
+ typedef
+ typename std::remove_reference<StatusOrType>::type::value_type value_type;
+
+ template <typename InnerMatcher>
+ explicit IsOkAndHoldsMatcherImpl(InnerMatcher&& inner_matcher)
+ : inner_matcher_(::testing::SafeMatcherCast<const value_type&>(
+ std::forward<InnerMatcher>(inner_matcher))) {}
+
+ void DescribeTo(std::ostream* os) const override {
+ *os << "is OK and has a value that ";
+ inner_matcher_.DescribeTo(os);
+ }
+
+ void DescribeNegationTo(std::ostream* os) const override {
+ *os << "isn't OK or has a value that ";
+ inner_matcher_.DescribeNegationTo(os);
+ }
+
+ bool MatchAndExplain(
+ StatusOrType actual_value,
+ ::testing::MatchResultListener* result_listener) const override {
+ if (!actual_value.ok()) {
+ *result_listener << "which has status " << actual_value.status();
+ return false;
+ }
+
+ ::testing::StringMatchResultListener inner_listener;
+ const bool matches =
+ inner_matcher_.MatchAndExplain(*actual_value, &inner_listener);
+ const std::string inner_explanation = inner_listener.str();
+ if (!inner_explanation.empty()) {
+ *result_listener << "which contains value "
+ << ::testing::PrintToString(*actual_value) << ", "
+ << inner_explanation;
+ }
+ return matches;
+ }
+
+ private:
+ const ::testing::Matcher<const value_type&> inner_matcher_;
+};
+
+// Implements IsOkAndHolds(m) as a polymorphic matcher.
+template <typename InnerMatcher>
+class IsOkAndHoldsMatcher {
+ public:
+ explicit IsOkAndHoldsMatcher(InnerMatcher inner_matcher)
+ : inner_matcher_(std::move(inner_matcher)) {}
+
+ // Converts this polymorphic matcher to a monomorphic matcher of the
+ // given type. StatusOrType can be either StatusOr<T> or a
+ // reference to StatusOr<T>.
+ template <typename StatusOrType>
+ operator ::testing::Matcher<StatusOrType>() const { // NOLINT
+ return ::testing::Matcher<StatusOrType>(
+ new IsOkAndHoldsMatcherImpl<const StatusOrType&>(inner_matcher_));
+ }
+
+ private:
+ const InnerMatcher inner_matcher_;
+};
+
+// Monomorphic implementation of matcher IsOk() for a given type T.
+// T can be Status, StatusOr<>, or a reference to either of them.
+template <typename T>
+class MonoIsOkMatcherImpl : public ::testing::MatcherInterface<T> {
+ public:
+ void DescribeTo(std::ostream* os) const override { *os << "is OK"; }
+ void DescribeNegationTo(std::ostream* os) const override {
+ *os << "is not OK";
+ }
+ bool MatchAndExplain(T actual_value,
+ ::testing::MatchResultListener*) const override {
+ return GetStatus(actual_value).ok();
+ }
+};
+
+// Implements IsOk() as a polymorphic matcher.
+class IsOkMatcher {
+ public:
+ template <typename T>
+ operator ::testing::Matcher<T>() const { // NOLINT
+ return ::testing::Matcher<T>(new MonoIsOkMatcherImpl<T>());
+ }
+};
+
+// Macros for testing the results of functions that return absl::Status or
+// absl::StatusOr<T> (for any type T).
+#define EXPECT_OK(expression) EXPECT_THAT(expression, IsOk())
+
+// Returns a gMock matcher that matches a StatusOr<> whose status is
+// OK and whose value matches the inner matcher.
+template <typename InnerMatcher>
+IsOkAndHoldsMatcher<typename std::decay<InnerMatcher>::type> IsOkAndHolds(
+ InnerMatcher&& inner_matcher) {
+ return IsOkAndHoldsMatcher<typename std::decay<InnerMatcher>::type>(
+ std::forward<InnerMatcher>(inner_matcher));
+}
+
+// Returns a gMock matcher that matches a Status or StatusOr<> which is OK.
+inline IsOkMatcher IsOk() { return IsOkMatcher(); }
+#endif // GTEST_HAS_STATUS_MATCHERS
+
+struct CopyDetector {
+ CopyDetector() = default;
+ explicit CopyDetector(int xx) : x(xx) {}
+ CopyDetector(CopyDetector&& d) noexcept
+ : x(d.x), copied(false), moved(true) {}
+ CopyDetector(const CopyDetector& d) : x(d.x), copied(true), moved(false) {}
+ CopyDetector& operator=(const CopyDetector& c) {
+ x = c.x;
+ copied = true;
+ moved = false;
+ return *this;
+ }
+ CopyDetector& operator=(CopyDetector&& c) noexcept {
+ x = c.x;
+ copied = false;
+ moved = true;
+ return *this;
+ }
+ int x = 0;
+ bool copied = false;
+ bool moved = false;
+};
+
+testing::Matcher<const CopyDetector&> CopyDetectorHas(int a, bool b, bool c) {
+ return AllOf(Field(&CopyDetector::x, a), Field(&CopyDetector::moved, b),
+ Field(&CopyDetector::copied, c));
+}
+
+class Base1 {
+ public:
+ virtual ~Base1() {}
+ int pad;
+};
+
+class Base2 {
+ public:
+ virtual ~Base2() {}
+ int yetotherpad;
+};
+
+class Derived : public Base1, public Base2 {
+ public:
+ virtual ~Derived() {}
+ int evenmorepad;
+};
+
+class CopyNoAssign {
+ public:
+ explicit CopyNoAssign(int value) : foo(value) {}
+ CopyNoAssign(const CopyNoAssign& other) : foo(other.foo) {}
+ int foo;
+
+ private:
+ const CopyNoAssign& operator=(const CopyNoAssign&);
+};
+
+absl::StatusOr<std::unique_ptr<int>> ReturnUniquePtr() {
+ // Uses implicit constructor from T&&
+ return absl::make_unique<int>(0);
+}
+
+TEST(StatusOr, ElementType) {
+ static_assert(std::is_same<absl::StatusOr<int>::value_type, int>(), "");
+ static_assert(std::is_same<absl::StatusOr<char>::value_type, char>(), "");
+}
+
+TEST(StatusOr, TestMoveOnlyInitialization) {
+ absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
+ ASSERT_TRUE(thing.ok());
+ EXPECT_EQ(0, **thing);
+ int* previous = thing->get();
+
+ thing = ReturnUniquePtr();
+ EXPECT_TRUE(thing.ok());
+ EXPECT_EQ(0, **thing);
+ EXPECT_NE(previous, thing->get());
+}
+
+TEST(StatusOr, TestMoveOnlyValueExtraction) {
+ absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
+ ASSERT_TRUE(thing.ok());
+ std::unique_ptr<int> ptr = *std::move(thing);
+ EXPECT_EQ(0, *ptr);
+
+ thing = std::move(ptr);
+ ptr = std::move(*thing);
+ EXPECT_EQ(0, *ptr);
+}
+
+TEST(StatusOr, TestMoveOnlyInitializationFromTemporaryByValueOrDie) {
+ std::unique_ptr<int> ptr(*ReturnUniquePtr());
+ EXPECT_EQ(0, *ptr);
+}
+
+TEST(StatusOr, TestValueOrDieOverloadForConstTemporary) {
+ static_assert(
+ std::is_same<const int&&,
+ decltype(
+ std::declval<const absl::StatusOr<int>&&>().value())>(),
+ "value() for const temporaries should return const T&&");
+}
+
+TEST(StatusOr, TestMoveOnlyConversion) {
+ absl::StatusOr<std::unique_ptr<const int>> const_thing(ReturnUniquePtr());
+ EXPECT_TRUE(const_thing.ok());
+ EXPECT_EQ(0, **const_thing);
+
+ // Test rvalue converting assignment
+ const int* const_previous = const_thing->get();
+ const_thing = ReturnUniquePtr();
+ EXPECT_TRUE(const_thing.ok());
+ EXPECT_EQ(0, **const_thing);
+ EXPECT_NE(const_previous, const_thing->get());
+}
+
+TEST(StatusOr, TestMoveOnlyVector) {
+ // Sanity check that absl::StatusOr<MoveOnly> works in vector.
+ std::vector<absl::StatusOr<std::unique_ptr<int>>> vec;
+ vec.push_back(ReturnUniquePtr());
+ vec.resize(2);
+ auto another_vec = std::move(vec);
+ EXPECT_EQ(0, **another_vec[0]);
+ EXPECT_EQ(absl::UnknownError(""), another_vec[1].status());
+}
+
+TEST(StatusOr, TestDefaultCtor) {
+ absl::StatusOr<int> thing;
+ EXPECT_FALSE(thing.ok());
+ EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
+}
+
+// Define `EXPECT_DEATH_OR_THROW` to test the behavior of `StatusOr::value`,
+// which either throws `BadStatusOrAccess` or `LOG(FATAL)` based on whether
+// exceptions are enabled.
+#ifdef ABSL_HAVE_EXCEPTIONS
+#define EXPECT_DEATH_OR_THROW(statement, status_) \
+ EXPECT_THROW( \
+ { \
+ try { \
+ statement; \
+ } catch (const absl::BadStatusOrAccess& e) { \
+ EXPECT_EQ(e.status(), status_); \
+ throw; \
+ } \
+ }, \
+ absl::BadStatusOrAccess);
+#else // ABSL_HAVE_EXCEPTIONS
+#define EXPECT_DEATH_OR_THROW(statement, status) \
+ EXPECT_DEATH_IF_SUPPORTED(statement, status.ToString());
+#endif // ABSL_HAVE_EXCEPTIONS
+
+TEST(StatusOrDeathTest, TestDefaultCtorValue) {
+ absl::StatusOr<int> thing;
+ EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
+ const absl::StatusOr<int> thing2;
+ EXPECT_DEATH_OR_THROW(thing2.value(), absl::UnknownError(""));
+}
+
+TEST(StatusOrDeathTest, TestValueNotOk) {
+ absl::StatusOr<int> thing(absl::CancelledError());
+ EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
+}
+
+TEST(StatusOrDeathTest, TestValueNotOkConst) {
+ const absl::StatusOr<int> thing(absl::UnknownError(""));
+ EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
+}
+
+TEST(StatusOrDeathTest, TestPointerDefaultCtorValue) {
+ absl::StatusOr<int*> thing;
+ EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
+}
+
+TEST(StatusOrDeathTest, TestPointerValueNotOk) {
+ absl::StatusOr<int*> thing(absl::CancelledError());
+ EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
+}
+
+TEST(StatusOrDeathTest, TestPointerValueNotOkConst) {
+ const absl::StatusOr<int*> thing(absl::CancelledError());
+ EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
+}
+
+#if GTEST_HAS_DEATH_TEST
+TEST(StatusOrDeathTest, TestStatusCtorStatusOk) {
+ EXPECT_DEBUG_DEATH(
+ {
+ // This will DCHECK
+ absl::StatusOr<int> thing(absl::OkStatus());
+ // In optimized mode, we are actually going to get error::INTERNAL for
+ // status here, rather than crashing, so check that.
+ EXPECT_FALSE(thing.ok());
+ EXPECT_EQ(thing.status().code(), absl::StatusCode::kInternal);
+ },
+ "An OK status is not a valid constructor argument");
+}
+
+TEST(StatusOrDeathTest, TestPointerStatusCtorStatusOk) {
+ EXPECT_DEBUG_DEATH(
+ {
+ absl::StatusOr<int*> thing(absl::OkStatus());
+ // In optimized mode, we are actually going to get error::INTERNAL for
+ // status here, rather than crashing, so check that.
+ EXPECT_FALSE(thing.ok());
+ EXPECT_EQ(thing.status().code(), absl::StatusCode::kInternal);
+ },
+ "An OK status is not a valid constructor argument");
+}
+#endif
+
+TEST(StatusOr, ValueAccessor) {
+ const int kIntValue = 110;
+ {
+ absl::StatusOr<int> status_or(kIntValue);
+ EXPECT_EQ(kIntValue, status_or.value());
+ EXPECT_EQ(kIntValue, std::move(status_or).value());
+ }
+ {
+ absl::StatusOr<CopyDetector> status_or(kIntValue);
+ EXPECT_THAT(status_or,
+ IsOkAndHolds(CopyDetectorHas(kIntValue, false, false)));
+ CopyDetector copy_detector = status_or.value();
+ EXPECT_THAT(copy_detector, CopyDetectorHas(kIntValue, false, true));
+ copy_detector = std::move(status_or).value();
+ EXPECT_THAT(copy_detector, CopyDetectorHas(kIntValue, true, false));
+ }
+}
+
+TEST(StatusOr, BadValueAccess) {
+ const absl::Status kError = absl::CancelledError("message");
+ absl::StatusOr<int> status_or(kError);
+ EXPECT_DEATH_OR_THROW(status_or.value(), kError);
+}
+
+TEST(StatusOr, TestStatusCtor) {
+ absl::StatusOr<int> thing(absl::CancelledError());
+ EXPECT_FALSE(thing.ok());
+ EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled);
+}
+
+
+
+TEST(StatusOr, TestValueCtor) {
+ const int kI = 4;
+ const absl::StatusOr<int> thing(kI);
+ EXPECT_TRUE(thing.ok());
+ EXPECT_EQ(kI, *thing);
+}
+
+struct Foo {
+ const int x;
+ explicit Foo(int y) : x(y) {}
+};
+
+TEST(StatusOr, InPlaceConstruction) {
+ EXPECT_THAT(absl::StatusOr<Foo>(absl::in_place, 10),
+ IsOkAndHolds(Field(&Foo::x, 10)));
+}
+
+struct InPlaceHelper {
+ InPlaceHelper(std::initializer_list<int> xs, std::unique_ptr<int> yy)
+ : x(xs), y(std::move(yy)) {}
+ const std::vector<int> x;
+ std::unique_ptr<int> y;
+};
+
+TEST(StatusOr, InPlaceInitListConstruction) {
+ absl::StatusOr<InPlaceHelper> status_or(absl::in_place, {10, 11, 12},
+ absl::make_unique<int>(13));
+ EXPECT_THAT(status_or, IsOkAndHolds(AllOf(
+ Field(&InPlaceHelper::x, ElementsAre(10, 11, 12)),
+ Field(&InPlaceHelper::y, Pointee(13)))));
+}
+
+TEST(StatusOr, Emplace) {
+ absl::StatusOr<Foo> status_or_foo(10);
+ status_or_foo.emplace(20);
+ EXPECT_THAT(status_or_foo, IsOkAndHolds(Field(&Foo::x, 20)));
+ status_or_foo = absl::InvalidArgumentError("msg");
+ EXPECT_FALSE(status_or_foo.ok());
+ EXPECT_EQ(status_or_foo.status().code(), absl::StatusCode::kInvalidArgument);
+ EXPECT_EQ(status_or_foo.status().message(), "msg");
+ status_or_foo.emplace(20);
+ EXPECT_THAT(status_or_foo, IsOkAndHolds(Field(&Foo::x, 20)));
+}
+
+TEST(StatusOr, EmplaceInitializerList) {
+ absl::StatusOr<InPlaceHelper> status_or(absl::in_place, {10, 11, 12},
+ absl::make_unique<int>(13));
+ status_or.emplace({1, 2, 3}, absl::make_unique<int>(4));
+ EXPECT_THAT(status_or,
+ IsOkAndHolds(AllOf(Field(&InPlaceHelper::x, ElementsAre(1, 2, 3)),
+ Field(&InPlaceHelper::y, Pointee(4)))));
+ status_or = absl::InvalidArgumentError("msg");
+ EXPECT_FALSE(status_or.ok());
+ EXPECT_EQ(status_or.status().code(), absl::StatusCode::kInvalidArgument);
+ EXPECT_EQ(status_or.status().message(), "msg");
+ status_or.emplace({1, 2, 3}, absl::make_unique<int>(4));
+ EXPECT_THAT(status_or,
+ IsOkAndHolds(AllOf(Field(&InPlaceHelper::x, ElementsAre(1, 2, 3)),
+ Field(&InPlaceHelper::y, Pointee(4)))));
+}
+
+TEST(StatusOr, TestCopyCtorStatusOk) {
+ const int kI = 4;
+ const absl::StatusOr<int> original(kI);
+ const absl::StatusOr<int> copy(original);
+ EXPECT_OK(copy.status());
+ EXPECT_EQ(*original, *copy);
+}
+
+TEST(StatusOr, TestCopyCtorStatusNotOk) {
+ absl::StatusOr<int> original(absl::CancelledError());
+ absl::StatusOr<int> copy(original);
+ EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
+}
+
+TEST(StatusOr, TestCopyCtorNonAssignable) {
+ const int kI = 4;
+ CopyNoAssign value(kI);
+ absl::StatusOr<CopyNoAssign> original(value);
+ absl::StatusOr<CopyNoAssign> copy(original);
+ EXPECT_OK(copy.status());
+ EXPECT_EQ(original->foo, copy->foo);
+}
+
+TEST(StatusOr, TestCopyCtorStatusOKConverting) {
+ const int kI = 4;
+ absl::StatusOr<int> original(kI);
+ absl::StatusOr<double> copy(original);
+ EXPECT_OK(copy.status());
+ EXPECT_DOUBLE_EQ(*original, *copy);
+}
+
+TEST(StatusOr, TestCopyCtorStatusNotOkConverting) {
+ absl::StatusOr<int> original(absl::CancelledError());
+ absl::StatusOr<double> copy(original);
+ EXPECT_EQ(copy.status(), original.status());
+}
+
+TEST(StatusOr, TestAssignmentStatusOk) {
+ // Copy assignmment
+ {
+ const auto p = std::make_shared<int>(17);
+ absl::StatusOr<std::shared_ptr<int>> source(p);
+
+ absl::StatusOr<std::shared_ptr<int>> target;
+ target = source;
+
+ ASSERT_TRUE(target.ok());
+ EXPECT_OK(target.status());
+ EXPECT_EQ(p, *target);
+
+ ASSERT_TRUE(source.ok());
+ EXPECT_OK(source.status());
+ EXPECT_EQ(p, *source);
+ }
+
+ // Move asssignment
+ {
+ const auto p = std::make_shared<int>(17);
+ absl::StatusOr<std::shared_ptr<int>> source(p);
+
+ absl::StatusOr<std::shared_ptr<int>> target;
+ target = std::move(source);
+
+ ASSERT_TRUE(target.ok());
+ EXPECT_OK(target.status());
+ EXPECT_EQ(p, *target);
+
+ ASSERT_TRUE(source.ok());
+ EXPECT_OK(source.status());
+ EXPECT_EQ(nullptr, *source);
+ }
+}
+
+TEST(StatusOr, TestAssignmentStatusNotOk) {
+ // Copy assignment
+ {
+ const absl::Status expected = absl::CancelledError();
+ absl::StatusOr<int> source(expected);
+
+ absl::StatusOr<int> target;
+ target = source;
+
+ EXPECT_FALSE(target.ok());
+ EXPECT_EQ(expected, target.status());
+
+ EXPECT_FALSE(source.ok());
+ EXPECT_EQ(expected, source.status());
+ }
+
+ // Move assignment
+ {
+ const absl::Status expected = absl::CancelledError();
+ absl::StatusOr<int> source(expected);
+
+ absl::StatusOr<int> target;
+ target = std::move(source);
+
+ EXPECT_FALSE(target.ok());
+ EXPECT_EQ(expected, target.status());
+
+ EXPECT_FALSE(source.ok());
+ EXPECT_EQ(source.status().code(), absl::StatusCode::kInternal);
+ }
+}
+
+TEST(StatusOr, TestAssignmentStatusOKConverting) {
+ // Copy assignment
+ {
+ const int kI = 4;
+ absl::StatusOr<int> source(kI);
+
+ absl::StatusOr<double> target;
+ target = source;
+
+ ASSERT_TRUE(target.ok());
+ EXPECT_OK(target.status());
+ EXPECT_DOUBLE_EQ(kI, *target);
+
+ ASSERT_TRUE(source.ok());
+ EXPECT_OK(source.status());
+ EXPECT_DOUBLE_EQ(kI, *source);
+ }
+
+ // Move assignment
+ {
+ const auto p = new int(17);
+ absl::StatusOr<std::unique_ptr<int>> source(absl::WrapUnique(p));
+
+ absl::StatusOr<std::shared_ptr<int>> target;
+ target = std::move(source);
+
+ ASSERT_TRUE(target.ok());
+ EXPECT_OK(target.status());
+ EXPECT_EQ(p, target->get());
+
+ ASSERT_TRUE(source.ok());
+ EXPECT_OK(source.status());
+ EXPECT_EQ(nullptr, source->get());
+ }
+}
+
+struct A {
+ int x;
+};
+
+struct ImplicitConstructibleFromA {
+ int x;
+ bool moved;
+ ImplicitConstructibleFromA(const A& a) // NOLINT
+ : x(a.x), moved(false) {}
+ ImplicitConstructibleFromA(A&& a) // NOLINT
+ : x(a.x), moved(true) {}
+};
+
+TEST(StatusOr, ImplicitConvertingConstructor) {
+ EXPECT_THAT(
+ absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromA>>(
+ absl::StatusOr<A>(A{11})),
+ IsOkAndHolds(AllOf(Field(&ImplicitConstructibleFromA::x, 11),
+ Field(&ImplicitConstructibleFromA::moved, true))));
+ absl::StatusOr<A> a(A{12});
+ EXPECT_THAT(
+ absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromA>>(a),
+ IsOkAndHolds(AllOf(Field(&ImplicitConstructibleFromA::x, 12),
+ Field(&ImplicitConstructibleFromA::moved, false))));
+}
+
+struct ExplicitConstructibleFromA {
+ int x;
+ bool moved;
+ explicit ExplicitConstructibleFromA(const A& a) : x(a.x), moved(false) {}
+ explicit ExplicitConstructibleFromA(A&& a) : x(a.x), moved(true) {}
+};
+
+TEST(StatusOr, ExplicitConvertingConstructor) {
+ EXPECT_FALSE(
+ (std::is_convertible<const absl::StatusOr<A>&,
+ absl::StatusOr<ExplicitConstructibleFromA>>::value));
+ EXPECT_FALSE(
+ (std::is_convertible<absl::StatusOr<A>&&,
+ absl::StatusOr<ExplicitConstructibleFromA>>::value));
+ EXPECT_THAT(
+ absl::StatusOr<ExplicitConstructibleFromA>(absl::StatusOr<A>(A{11})),
+ IsOkAndHolds(AllOf(Field(&ExplicitConstructibleFromA::x, 11),
+ Field(&ExplicitConstructibleFromA::moved, true))));
+ absl::StatusOr<A> a(A{12});
+ EXPECT_THAT(
+ absl::StatusOr<ExplicitConstructibleFromA>(a),
+ IsOkAndHolds(AllOf(Field(&ExplicitConstructibleFromA::x, 12),
+ Field(&ExplicitConstructibleFromA::moved, false))));
+}
+
+struct ImplicitConstructibleFromBool {
+ ImplicitConstructibleFromBool(bool y) : x(y) {} // NOLINT
+ bool x = false;
+};
+
+struct ConvertibleToBool {
+ explicit ConvertibleToBool(bool y) : x(y) {}
+ operator bool() const { return x; } // NOLINT
+ bool x = false;
+};
+
+TEST(StatusOr, ImplicitBooleanConstructionWithImplicitCasts) {
+ EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(true)),
+ IsOkAndHolds(true));
+ EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(false)),
+ IsOkAndHolds(false));
+ EXPECT_THAT(
+ absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromBool>>(
+ absl::StatusOr<bool>(false)),
+ IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
+ EXPECT_FALSE((std::is_convertible<
+ absl::StatusOr<ConvertibleToBool>,
+ absl::StatusOr<ImplicitConstructibleFromBool>>::value));
+}
+
+TEST(StatusOr, BooleanConstructionWithImplicitCasts) {
+ EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(true)),
+ IsOkAndHolds(true));
+ EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(false)),
+ IsOkAndHolds(false));
+ EXPECT_THAT(
+ absl::StatusOr<ImplicitConstructibleFromBool>{
+ absl::StatusOr<bool>(false)},
+ IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
+ EXPECT_THAT(
+ absl::StatusOr<ImplicitConstructibleFromBool>{
+ absl::StatusOr<bool>(absl::InvalidArgumentError(""))},
+ Not(IsOk()));
+
+ EXPECT_THAT(
+ absl::StatusOr<ImplicitConstructibleFromBool>{
+ absl::StatusOr<ConvertibleToBool>(ConvertibleToBool{false})},
+ IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
+ EXPECT_THAT(
+ absl::StatusOr<ImplicitConstructibleFromBool>{
+ absl::StatusOr<ConvertibleToBool>(absl::InvalidArgumentError(""))},
+ Not(IsOk()));
+}
+
+TEST(StatusOr, ConstImplicitCast) {
+ EXPECT_THAT(absl::implicit_cast<absl::StatusOr<bool>>(
+ absl::StatusOr<const bool>(true)),
+ IsOkAndHolds(true));
+ EXPECT_THAT(absl::implicit_cast<absl::StatusOr<bool>>(
+ absl::StatusOr<const bool>(false)),
+ IsOkAndHolds(false));
+ EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const bool>>(
+ absl::StatusOr<bool>(true)),
+ IsOkAndHolds(true));
+ EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const bool>>(
+ absl::StatusOr<bool>(false)),
+ IsOkAndHolds(false));
+ EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const std::string>>(
+ absl::StatusOr<std::string>("foo")),
+ IsOkAndHolds("foo"));
+ EXPECT_THAT(absl::implicit_cast<absl::StatusOr<std::string>>(
+ absl::StatusOr<const std::string>("foo")),
+ IsOkAndHolds("foo"));
+ EXPECT_THAT(
+ absl::implicit_cast<absl::StatusOr<std::shared_ptr<const std::string>>>(
+ absl::StatusOr<std::shared_ptr<std::string>>(
+ std::make_shared<std::string>("foo"))),
+ IsOkAndHolds(Pointee(std::string("foo"))));
+}
+
+TEST(StatusOr, ConstExplicitConstruction) {
+ EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<const bool>(true)),
+ IsOkAndHolds(true));
+ EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<const bool>(false)),
+ IsOkAndHolds(false));
+ EXPECT_THAT(absl::StatusOr<const bool>(absl::StatusOr<bool>(true)),
+ IsOkAndHolds(true));
+ EXPECT_THAT(absl::StatusOr<const bool>(absl::StatusOr<bool>(false)),
+ IsOkAndHolds(false));
+}
+
+struct ExplicitConstructibleFromInt {
+ int x;
+ explicit ExplicitConstructibleFromInt(int y) : x(y) {}
+};
+
+TEST(StatusOr, ExplicitConstruction) {
+ EXPECT_THAT(absl::StatusOr<ExplicitConstructibleFromInt>(10),
+ IsOkAndHolds(Field(&ExplicitConstructibleFromInt::x, 10)));
+}
+
+TEST(StatusOr, ImplicitConstruction) {
+ // Check implicit casting works.
+ auto status_or =
+ absl::implicit_cast<absl::StatusOr<absl::variant<int, std::string>>>(10);
+ EXPECT_THAT(status_or, IsOkAndHolds(VariantWith<int>(10)));
+}
+
+TEST(StatusOr, ImplicitConstructionFromInitliazerList) {
+ // Note: dropping the explicit std::initializer_list<int> is not supported
+ // by absl::StatusOr or absl::optional.
+ auto status_or =
+ absl::implicit_cast<absl::StatusOr<std::vector<int>>>({{10, 20, 30}});
+ EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
+}
+
+TEST(StatusOr, UniquePtrImplicitConstruction) {
+ auto status_or = absl::implicit_cast<absl::StatusOr<std::unique_ptr<Base1>>>(
+ absl::make_unique<Derived>());
+ EXPECT_THAT(status_or, IsOkAndHolds(Ne(nullptr)));
+}
+
+TEST(StatusOr, NestedStatusOrCopyAndMoveConstructorTests) {
+ absl::StatusOr<absl::StatusOr<CopyDetector>> status_or = CopyDetector(10);
+ absl::StatusOr<absl::StatusOr<CopyDetector>> status_error =
+ absl::InvalidArgumentError("foo");
+ EXPECT_THAT(status_or,
+ IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
+ absl::StatusOr<absl::StatusOr<CopyDetector>> a = status_or;
+ EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
+ absl::StatusOr<absl::StatusOr<CopyDetector>> a_err = status_error;
+ EXPECT_THAT(a_err, Not(IsOk()));
+
+ const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref = status_or;
+ absl::StatusOr<absl::StatusOr<CopyDetector>> b = cref; // NOLINT
+ EXPECT_THAT(b, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
+ const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref_err = status_error;
+ absl::StatusOr<absl::StatusOr<CopyDetector>> b_err = cref_err; // NOLINT
+ EXPECT_THAT(b_err, Not(IsOk()));
+
+ absl::StatusOr<absl::StatusOr<CopyDetector>> c = std::move(status_or);
+ EXPECT_THAT(c, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
+ absl::StatusOr<absl::StatusOr<CopyDetector>> c_err = std::move(status_error);
+ EXPECT_THAT(c_err, Not(IsOk()));
+}
+
+TEST(StatusOr, NestedStatusOrCopyAndMoveAssignment) {
+ absl::StatusOr<absl::StatusOr<CopyDetector>> status_or = CopyDetector(10);
+ absl::StatusOr<absl::StatusOr<CopyDetector>> status_error =
+ absl::InvalidArgumentError("foo");
+ absl::StatusOr<absl::StatusOr<CopyDetector>> a;
+ a = status_or;
+ EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
+ a = status_error;
+ EXPECT_THAT(a, Not(IsOk()));
+
+ const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref = status_or;
+ a = cref;
+ EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
+ const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref_err = status_error;
+ a = cref_err;
+ EXPECT_THAT(a, Not(IsOk()));
+ a = std::move(status_or);
+ EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
+ a = std::move(status_error);
+ EXPECT_THAT(a, Not(IsOk()));
+}
+
+struct Copyable {
+ Copyable() {}
+ Copyable(const Copyable&) {}
+ Copyable& operator=(const Copyable&) { return *this; }
+};
+
+struct MoveOnly {
+ MoveOnly() {}
+ MoveOnly(MoveOnly&&) {}
+ MoveOnly& operator=(MoveOnly&&) { return *this; }
+};
+
+struct NonMovable {
+ NonMovable() {}
+ NonMovable(const NonMovable&) = delete;
+ NonMovable(NonMovable&&) = delete;
+ NonMovable& operator=(const NonMovable&) = delete;
+ NonMovable& operator=(NonMovable&&) = delete;
+};
+
+TEST(StatusOr, CopyAndMoveAbility) {
+ EXPECT_TRUE(std::is_copy_constructible<Copyable>::value);
+ EXPECT_TRUE(std::is_copy_assignable<Copyable>::value);
+ EXPECT_TRUE(std::is_move_constructible<Copyable>::value);
+ EXPECT_TRUE(std::is_move_assignable<Copyable>::value);
+ EXPECT_FALSE(std::is_copy_constructible<MoveOnly>::value);
+ EXPECT_FALSE(std::is_copy_assignable<MoveOnly>::value);
+ EXPECT_TRUE(std::is_move_constructible<MoveOnly>::value);
+ EXPECT_TRUE(std::is_move_assignable<MoveOnly>::value);
+ EXPECT_FALSE(std::is_copy_constructible<NonMovable>::value);
+ EXPECT_FALSE(std::is_copy_assignable<NonMovable>::value);
+ EXPECT_FALSE(std::is_move_constructible<NonMovable>::value);
+ EXPECT_FALSE(std::is_move_assignable<NonMovable>::value);
+}
+
+TEST(StatusOr, StatusOrAnyCopyAndMoveConstructorTests) {
+ absl::StatusOr<absl::any> status_or = CopyDetector(10);
+ absl::StatusOr<absl::any> status_error = absl::InvalidArgumentError("foo");
+ EXPECT_THAT(
+ status_or,
+ IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
+ absl::StatusOr<absl::any> a = status_or;
+ EXPECT_THAT(
+ a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
+ absl::StatusOr<absl::any> a_err = status_error;
+ EXPECT_THAT(a_err, Not(IsOk()));
+
+ const absl::StatusOr<absl::any>& cref = status_or;
+ // No lint for no-change copy.
+ absl::StatusOr<absl::any> b = cref; // NOLINT
+ EXPECT_THAT(
+ b, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
+ const absl::StatusOr<absl::any>& cref_err = status_error;
+ // No lint for no-change copy.
+ absl::StatusOr<absl::any> b_err = cref_err; // NOLINT
+ EXPECT_THAT(b_err, Not(IsOk()));
+
+ absl::StatusOr<absl::any> c = std::move(status_or);
+ EXPECT_THAT(
+ c, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
+ absl::StatusOr<absl::any> c_err = std::move(status_error);
+ EXPECT_THAT(c_err, Not(IsOk()));
+}
+
+TEST(StatusOr, StatusOrAnyCopyAndMoveAssignment) {
+ absl::StatusOr<absl::any> status_or = CopyDetector(10);
+ absl::StatusOr<absl::any> status_error = absl::InvalidArgumentError("foo");
+ absl::StatusOr<absl::any> a;
+ a = status_or;
+ EXPECT_THAT(
+ a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
+ a = status_error;
+ EXPECT_THAT(a, Not(IsOk()));
+
+ const absl::StatusOr<absl::any>& cref = status_or;
+ a = cref;
+ EXPECT_THAT(
+ a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
+ const absl::StatusOr<absl::any>& cref_err = status_error;
+ a = cref_err;
+ EXPECT_THAT(a, Not(IsOk()));
+ a = std::move(status_or);
+ EXPECT_THAT(
+ a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
+ a = std::move(status_error);
+ EXPECT_THAT(a, Not(IsOk()));
+}
+
+TEST(StatusOr, StatusOrCopyAndMoveTestsConstructor) {
+ absl::StatusOr<CopyDetector> status_or(10);
+ ASSERT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(10, false, false)));
+ absl::StatusOr<CopyDetector> a(status_or);
+ EXPECT_THAT(a, IsOkAndHolds(CopyDetectorHas(10, false, true)));
+ const absl::StatusOr<CopyDetector>& cref = status_or;
+ absl::StatusOr<CopyDetector> b(cref); // NOLINT
+ EXPECT_THAT(b, IsOkAndHolds(CopyDetectorHas(10, false, true)));
+ absl::StatusOr<CopyDetector> c(std::move(status_or));
+ EXPECT_THAT(c, IsOkAndHolds(CopyDetectorHas(10, true, false)));
+}
+
+TEST(StatusOr, StatusOrCopyAndMoveTestsAssignment) {
+ absl::StatusOr<CopyDetector> status_or(10);
+ ASSERT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(10, false, false)));
+ absl::StatusOr<CopyDetector> a;
+ a = status_or;
+ EXPECT_THAT(a, IsOkAndHolds(CopyDetectorHas(10, false, true)));
+ const absl::StatusOr<CopyDetector>& cref = status_or;
+ absl::StatusOr<CopyDetector> b;
+ b = cref;
+ EXPECT_THAT(b, IsOkAndHolds(CopyDetectorHas(10, false, true)));
+ absl::StatusOr<CopyDetector> c;
+ c = std::move(status_or);
+ EXPECT_THAT(c, IsOkAndHolds(CopyDetectorHas(10, true, false)));
+}
+
+TEST(StatusOr, AbslAnyAssignment) {
+ EXPECT_FALSE((std::is_assignable<absl::StatusOr<absl::any>,
+ absl::StatusOr<int>>::value));
+ absl::StatusOr<absl::any> status_or;
+ status_or = absl::InvalidArgumentError("foo");
+ EXPECT_THAT(status_or, Not(IsOk()));
+}
+
+TEST(StatusOr, ImplicitAssignment) {
+ absl::StatusOr<absl::variant<int, std::string>> status_or;
+ status_or = 10;
+ EXPECT_THAT(status_or, IsOkAndHolds(VariantWith<int>(10)));
+}
+
+TEST(StatusOr, SelfDirectInitAssignment) {
+ absl::StatusOr<std::vector<int>> status_or = {{10, 20, 30}};
+ status_or = *status_or;
+ EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
+}
+
+TEST(StatusOr, ImplicitCastFromInitializerList) {
+ absl::StatusOr<std::vector<int>> status_or = {{10, 20, 30}};
+ EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
+}
+
+TEST(StatusOr, UniquePtrImplicitAssignment) {
+ absl::StatusOr<std::unique_ptr<Base1>> status_or;
+ status_or = absl::make_unique<Derived>();
+ EXPECT_THAT(status_or, IsOkAndHolds(Ne(nullptr)));
+}
+
+TEST(StatusOr, Pointer) {
+ struct A {};
+ struct B : public A {};
+ struct C : private A {};
+
+ EXPECT_TRUE((std::is_constructible<absl::StatusOr<A*>, B*>::value));
+ EXPECT_TRUE((std::is_convertible<B*, absl::StatusOr<A*>>::value));
+ EXPECT_FALSE((std::is_constructible<absl::StatusOr<A*>, C*>::value));
+ EXPECT_FALSE((std::is_convertible<C*, absl::StatusOr<A*>>::value));
+}
+
+TEST(StatusOr, TestAssignmentStatusNotOkConverting) {
+ // Copy assignment
+ {
+ const absl::Status expected = absl::CancelledError();
+ absl::StatusOr<int> source(expected);
+
+ absl::StatusOr<double> target;
+ target = source;
+
+ EXPECT_FALSE(target.ok());
+ EXPECT_EQ(expected, target.status());
+
+ EXPECT_FALSE(source.ok());
+ EXPECT_EQ(expected, source.status());
+ }
+
+ // Move assignment
+ {
+ const absl::Status expected = absl::CancelledError();
+ absl::StatusOr<int> source(expected);
+
+ absl::StatusOr<double> target;
+ target = std::move(source);
+
+ EXPECT_FALSE(target.ok());
+ EXPECT_EQ(expected, target.status());
+
+ EXPECT_FALSE(source.ok());
+ EXPECT_EQ(source.status().code(), absl::StatusCode::kInternal);
+ }
+}
+
+TEST(StatusOr, SelfAssignment) {
+ // Copy-assignment, status OK
+ {
+ // A string long enough that it's likely to defeat any inline representation
+ // optimization.
+ const std::string long_str(128, 'a');
+
+ absl::StatusOr<std::string> so = long_str;
+ so = *&so;
+
+ ASSERT_TRUE(so.ok());
+ EXPECT_OK(so.status());
+ EXPECT_EQ(long_str, *so);
+ }
+
+ // Copy-assignment, error status
+ {
+ absl::StatusOr<int> so = absl::NotFoundError("taco");
+ so = *&so;
+
+ EXPECT_FALSE(so.ok());
+ EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
+ EXPECT_EQ(so.status().message(), "taco");
+ }
+
+ // Move-assignment with copyable type, status OK
+ {
+ absl::StatusOr<int> so = 17;
+
+ // Fool the compiler, which otherwise complains.
+ auto& same = so;
+ so = std::move(same);
+
+ ASSERT_TRUE(so.ok());
+ EXPECT_OK(so.status());
+ EXPECT_EQ(17, *so);
+ }
+
+ // Move-assignment with copyable type, error status
+ {
+ absl::StatusOr<int> so = absl::NotFoundError("taco");
+
+ // Fool the compiler, which otherwise complains.
+ auto& same = so;
+ so = std::move(same);
+
+ EXPECT_FALSE(so.ok());
+ EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
+ EXPECT_EQ(so.status().message(), "taco");
+ }
+
+ // Move-assignment with non-copyable type, status OK
+ {
+ const auto raw = new int(17);
+ absl::StatusOr<std::unique_ptr<int>> so = absl::WrapUnique(raw);
+
+ // Fool the compiler, which otherwise complains.
+ auto& same = so;
+ so = std::move(same);
+
+ ASSERT_TRUE(so.ok());
+ EXPECT_OK(so.status());
+ EXPECT_EQ(raw, so->get());
+ }
+
+ // Move-assignment with non-copyable type, error status
+ {
+ absl::StatusOr<std::unique_ptr<int>> so = absl::NotFoundError("taco");
+
+ // Fool the compiler, which otherwise complains.
+ auto& same = so;
+ so = std::move(same);
+
+ EXPECT_FALSE(so.ok());
+ EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
+ EXPECT_EQ(so.status().message(), "taco");
+ }
+}
+
+// These types form the overload sets of the constructors and the assignment
+// operators of `MockValue`. They distinguish construction from assignment,
+// lvalue from rvalue.
+struct FromConstructibleAssignableLvalue {};
+struct FromConstructibleAssignableRvalue {};
+struct FromImplicitConstructibleOnly {};
+struct FromAssignableOnly {};
+
+// This class is for testing the forwarding value assignments of `StatusOr`.
+// `from_rvalue` indicates whether the constructor or the assignment taking
+// rvalue reference is called. `from_assignment` indicates whether any
+// assignment is called.
+struct MockValue {
+ // Constructs `MockValue` from `FromConstructibleAssignableLvalue`.
+ MockValue(const FromConstructibleAssignableLvalue&) // NOLINT
+ : from_rvalue(false), assigned(false) {}
+ // Constructs `MockValue` from `FromConstructibleAssignableRvalue`.
+ MockValue(FromConstructibleAssignableRvalue&&) // NOLINT
+ : from_rvalue(true), assigned(false) {}
+ // Constructs `MockValue` from `FromImplicitConstructibleOnly`.
+ // `MockValue` is not assignable from `FromImplicitConstructibleOnly`.
+ MockValue(const FromImplicitConstructibleOnly&) // NOLINT
+ : from_rvalue(false), assigned(false) {}
+ // Assigns `FromConstructibleAssignableLvalue`.
+ MockValue& operator=(const FromConstructibleAssignableLvalue&) {
+ from_rvalue = false;
+ assigned = true;
+ return *this;
+ }
+ // Assigns `FromConstructibleAssignableRvalue` (rvalue only).
+ MockValue& operator=(FromConstructibleAssignableRvalue&&) {
+ from_rvalue = true;
+ assigned = true;
+ return *this;
+ }
+ // Assigns `FromAssignableOnly`, but not constructible from
+ // `FromAssignableOnly`.
+ MockValue& operator=(const FromAssignableOnly&) {
+ from_rvalue = false;
+ assigned = true;
+ return *this;
+ }
+ bool from_rvalue;
+ bool assigned;
+};
+
+// operator=(U&&)
+TEST(StatusOr, PerfectForwardingAssignment) {
+ // U == T
+ constexpr int kValue1 = 10, kValue2 = 20;
+ absl::StatusOr<CopyDetector> status_or;
+ CopyDetector lvalue(kValue1);
+ status_or = lvalue;
+ EXPECT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(kValue1, false, true)));
+ status_or = CopyDetector(kValue2);
+ EXPECT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(kValue2, true, false)));
+
+ // U != T
+ EXPECT_TRUE(
+ (std::is_assignable<absl::StatusOr<MockValue>&,
+ const FromConstructibleAssignableLvalue&>::value));
+ EXPECT_TRUE((std::is_assignable<absl::StatusOr<MockValue>&,
+ FromConstructibleAssignableLvalue&&>::value));
+ EXPECT_FALSE(
+ (std::is_assignable<absl::StatusOr<MockValue>&,
+ const FromConstructibleAssignableRvalue&>::value));
+ EXPECT_TRUE((std::is_assignable<absl::StatusOr<MockValue>&,
+ FromConstructibleAssignableRvalue&&>::value));
+ EXPECT_TRUE(
+ (std::is_assignable<absl::StatusOr<MockValue>&,
+ const FromImplicitConstructibleOnly&>::value));
+ EXPECT_FALSE((std::is_assignable<absl::StatusOr<MockValue>&,
+ const FromAssignableOnly&>::value));
+
+ absl::StatusOr<MockValue> from_lvalue(FromConstructibleAssignableLvalue{});
+ EXPECT_FALSE(from_lvalue->from_rvalue);
+ EXPECT_FALSE(from_lvalue->assigned);
+ from_lvalue = FromConstructibleAssignableLvalue{};
+ EXPECT_FALSE(from_lvalue->from_rvalue);
+ EXPECT_TRUE(from_lvalue->assigned);
+
+ absl::StatusOr<MockValue> from_rvalue(FromConstructibleAssignableRvalue{});
+ EXPECT_TRUE(from_rvalue->from_rvalue);
+ EXPECT_FALSE(from_rvalue->assigned);
+ from_rvalue = FromConstructibleAssignableRvalue{};
+ EXPECT_TRUE(from_rvalue->from_rvalue);
+ EXPECT_TRUE(from_rvalue->assigned);
+
+ absl::StatusOr<MockValue> from_implicit_constructible(
+ FromImplicitConstructibleOnly{});
+ EXPECT_FALSE(from_implicit_constructible->from_rvalue);
+ EXPECT_FALSE(from_implicit_constructible->assigned);
+ // construct a temporary `StatusOr` object and invoke the `StatusOr` move
+ // assignment operator.
+ from_implicit_constructible = FromImplicitConstructibleOnly{};
+ EXPECT_FALSE(from_implicit_constructible->from_rvalue);
+ EXPECT_FALSE(from_implicit_constructible->assigned);
+}
+
+TEST(StatusOr, TestStatus) {
+ absl::StatusOr<int> good(4);
+ EXPECT_TRUE(good.ok());
+ absl::StatusOr<int> bad(absl::CancelledError());
+ EXPECT_FALSE(bad.ok());
+ EXPECT_EQ(bad.status().code(), absl::StatusCode::kCancelled);
+}
+
+TEST(StatusOr, OperatorStarRefQualifiers) {
+ static_assert(
+ std::is_same<const int&,
+ decltype(*std::declval<const absl::StatusOr<int>&>())>(),
+ "Unexpected ref-qualifiers");
+ static_assert(
+ std::is_same<int&, decltype(*std::declval<absl::StatusOr<int>&>())>(),
+ "Unexpected ref-qualifiers");
+ static_assert(
+ std::is_same<const int&&,
+ decltype(*std::declval<const absl::StatusOr<int>&&>())>(),
+ "Unexpected ref-qualifiers");
+ static_assert(
+ std::is_same<int&&, decltype(*std::declval<absl::StatusOr<int>&&>())>(),
+ "Unexpected ref-qualifiers");
+}
+
+TEST(StatusOr, OperatorStar) {
+ const absl::StatusOr<std::string> const_lvalue("hello");
+ EXPECT_EQ("hello", *const_lvalue);
+
+ absl::StatusOr<std::string> lvalue("hello");
+ EXPECT_EQ("hello", *lvalue);
+
+ // Note: Recall that std::move() is equivalent to a static_cast to an rvalue
+ // reference type.
+ const absl::StatusOr<std::string> const_rvalue("hello");
+ EXPECT_EQ("hello", *std::move(const_rvalue)); // NOLINT
+
+ absl::StatusOr<std::string> rvalue("hello");
+ EXPECT_EQ("hello", *std::move(rvalue));
+}
+
+TEST(StatusOr, OperatorArrowQualifiers) {
+ static_assert(
+ std::is_same<
+ const int*,
+ decltype(std::declval<const absl::StatusOr<int>&>().operator->())>(),
+ "Unexpected qualifiers");
+ static_assert(
+ std::is_same<
+ int*, decltype(std::declval<absl::StatusOr<int>&>().operator->())>(),
+ "Unexpected qualifiers");
+ static_assert(
+ std::is_same<
+ const int*,
+ decltype(std::declval<const absl::StatusOr<int>&&>().operator->())>(),
+ "Unexpected qualifiers");
+ static_assert(
+ std::is_same<
+ int*, decltype(std::declval<absl::StatusOr<int>&&>().operator->())>(),
+ "Unexpected qualifiers");
+}
+
+TEST(StatusOr, OperatorArrow) {
+ const absl::StatusOr<std::string> const_lvalue("hello");
+ EXPECT_EQ(std::string("hello"), const_lvalue->c_str());
+
+ absl::StatusOr<std::string> lvalue("hello");
+ EXPECT_EQ(std::string("hello"), lvalue->c_str());
+}
+
+TEST(StatusOr, RValueStatus) {
+ absl::StatusOr<int> so(absl::NotFoundError("taco"));
+ const absl::Status s = std::move(so).status();
+
+ EXPECT_EQ(s.code(), absl::StatusCode::kNotFound);
+ EXPECT_EQ(s.message(), "taco");
+
+ // Check that !ok() still implies !status().ok(), even after moving out of the
+ // object. See the note on the rvalue ref-qualified status method.
+ EXPECT_FALSE(so.ok()); // NOLINT
+ EXPECT_FALSE(so.status().ok());
+ EXPECT_EQ(so.status().code(), absl::StatusCode::kInternal);
+ EXPECT_EQ(so.status().message(), "Status accessed after move.");
+}
+
+TEST(StatusOr, TestValue) {
+ const int kI = 4;
+ absl::StatusOr<int> thing(kI);
+ EXPECT_EQ(kI, *thing);
+}
+
+TEST(StatusOr, TestValueConst) {
+ const int kI = 4;
+ const absl::StatusOr<int> thing(kI);
+ EXPECT_EQ(kI, *thing);
+}
+
+TEST(StatusOr, TestPointerDefaultCtor) {
+ absl::StatusOr<int*> thing;
+ EXPECT_FALSE(thing.ok());
+ EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
+}
+
+
+
+TEST(StatusOr, TestPointerStatusCtor) {
+ absl::StatusOr<int*> thing(absl::CancelledError());
+ EXPECT_FALSE(thing.ok());
+ EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled);
+}
+
+TEST(StatusOr, TestPointerValueCtor) {
+ const int kI = 4;
+
+ // Construction from a non-null pointer
+ {
+ absl::StatusOr<const int*> so(&kI);
+ EXPECT_TRUE(so.ok());
+ EXPECT_OK(so.status());
+ EXPECT_EQ(&kI, *so);
+ }
+
+ // Construction from a null pointer constant
+ {
+ absl::StatusOr<const int*> so(nullptr);
+ EXPECT_TRUE(so.ok());
+ EXPECT_OK(so.status());
+ EXPECT_EQ(nullptr, *so);
+ }
+
+ // Construction from a non-literal null pointer
+ {
+ const int* const p = nullptr;
+
+ absl::StatusOr<const int*> so(p);
+ EXPECT_TRUE(so.ok());
+ EXPECT_OK(so.status());
+ EXPECT_EQ(nullptr, *so);
+ }
+}
+
+TEST(StatusOr, TestPointerCopyCtorStatusOk) {
+ const int kI = 0;
+ absl::StatusOr<const int*> original(&kI);
+ absl::StatusOr<const int*> copy(original);
+ EXPECT_OK(copy.status());
+ EXPECT_EQ(*original, *copy);
+}
+
+TEST(StatusOr, TestPointerCopyCtorStatusNotOk) {
+ absl::StatusOr<int*> original(absl::CancelledError());
+ absl::StatusOr<int*> copy(original);
+ EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
+}
+
+TEST(StatusOr, TestPointerCopyCtorStatusOKConverting) {
+ Derived derived;
+ absl::StatusOr<Derived*> original(&derived);
+ absl::StatusOr<Base2*> copy(original);
+ EXPECT_OK(copy.status());
+ EXPECT_EQ(static_cast<const Base2*>(*original), *copy);
+}
+
+TEST(StatusOr, TestPointerCopyCtorStatusNotOkConverting) {
+ absl::StatusOr<Derived*> original(absl::CancelledError());
+ absl::StatusOr<Base2*> copy(original);
+ EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
+}
+
+TEST(StatusOr, TestPointerAssignmentStatusOk) {
+ const int kI = 0;
+ absl::StatusOr<const int*> source(&kI);
+ absl::StatusOr<const int*> target;
+ target = source;
+ EXPECT_OK(target.status());
+ EXPECT_EQ(*source, *target);
+}
+
+TEST(StatusOr, TestPointerAssignmentStatusNotOk) {
+ absl::StatusOr<int*> source(absl::CancelledError());
+ absl::StatusOr<int*> target;
+ target = source;
+ EXPECT_EQ(target.status().code(), absl::StatusCode::kCancelled);
+}
+
+TEST(StatusOr, TestPointerAssignmentStatusOKConverting) {
+ Derived derived;
+ absl::StatusOr<Derived*> source(&derived);
+ absl::StatusOr<Base2*> target;
+ target = source;
+ EXPECT_OK(target.status());
+ EXPECT_EQ(static_cast<const Base2*>(*source), *target);
+}
+
+TEST(StatusOr, TestPointerAssignmentStatusNotOkConverting) {
+ absl::StatusOr<Derived*> source(absl::CancelledError());
+ absl::StatusOr<Base2*> target;
+ target = source;
+ EXPECT_EQ(target.status(), source.status());
+}
+
+TEST(StatusOr, TestPointerStatus) {
+ const int kI = 0;
+ absl::StatusOr<const int*> good(&kI);
+ EXPECT_TRUE(good.ok());
+ absl::StatusOr<const int*> bad(absl::CancelledError());
+ EXPECT_EQ(bad.status().code(), absl::StatusCode::kCancelled);
+}
+
+TEST(StatusOr, TestPointerValue) {
+ const int kI = 0;
+ absl::StatusOr<const int*> thing(&kI);
+ EXPECT_EQ(&kI, *thing);
+}
+
+TEST(StatusOr, TestPointerValueConst) {
+ const int kI = 0;
+ const absl::StatusOr<const int*> thing(&kI);
+ EXPECT_EQ(&kI, *thing);
+}
+
+TEST(StatusOr, StatusOrVectorOfUniquePointerCanReserveAndResize) {
+ using EvilType = std::vector<std::unique_ptr<int>>;
+ static_assert(std::is_copy_constructible<EvilType>::value, "");
+ std::vector<::absl::StatusOr<EvilType>> v(5);
+ v.reserve(v.capacity() + 10);
+ v.resize(v.capacity() + 10);
+}
+
+TEST(StatusOr, ConstPayload) {
+ // A reduced version of a problematic type found in the wild. All of the
+ // operations below should compile.
+ absl::StatusOr<const int> a;
+
+ // Copy-construction
+ absl::StatusOr<const int> b(a);
+
+ // Copy-assignment
+ EXPECT_FALSE(std::is_copy_assignable<absl::StatusOr<const int>>::value);
+
+ // Move-construction
+ absl::StatusOr<const int> c(std::move(a));
+
+ // Move-assignment
+ EXPECT_FALSE(std::is_move_assignable<absl::StatusOr<const int>>::value);
+}
+
+TEST(StatusOr, MapToStatusOrUniquePtr) {
+ // A reduced version of a problematic type found in the wild. All of the
+ // operations below should compile.
+ using MapType = std::map<std::string, absl::StatusOr<std::unique_ptr<int>>>;
+
+ MapType a;
+
+ // Move-construction
+ MapType b(std::move(a));
+
+ // Move-assignment
+ a = std::move(b);
+}
+
+TEST(StatusOr, ValueOrOk) {
+ const absl::StatusOr<int> status_or = 0;
+ EXPECT_EQ(status_or.value_or(-1), 0);
+}
+
+TEST(StatusOr, ValueOrDefault) {
+ const absl::StatusOr<int> status_or = absl::CancelledError();
+ EXPECT_EQ(status_or.value_or(-1), -1);
+}
+
+TEST(StatusOr, MoveOnlyValueOrOk) {
+ EXPECT_THAT(absl::StatusOr<std::unique_ptr<int>>(absl::make_unique<int>(0))
+ .value_or(absl::make_unique<int>(-1)),
+ Pointee(0));
+}
+
+TEST(StatusOr, MoveOnlyValueOrDefault) {
+ EXPECT_THAT(absl::StatusOr<std::unique_ptr<int>>(absl::CancelledError())
+ .value_or(absl::make_unique<int>(-1)),
+ Pointee(-1));
+}
+
+static absl::StatusOr<int> MakeStatus() { return 100; }
+
+TEST(StatusOr, TestIgnoreError) { MakeStatus().IgnoreError(); }
+
+TEST(StatusOr, EqualityOperator) {
+ constexpr int kNumCases = 4;
+ std::array<absl::StatusOr<int>, kNumCases> group1 = {
+ absl::StatusOr<int>(1), absl::StatusOr<int>(2),
+ absl::StatusOr<int>(absl::InvalidArgumentError("msg")),
+ absl::StatusOr<int>(absl::InternalError("msg"))};
+ std::array<absl::StatusOr<int>, kNumCases> group2 = {
+ absl::StatusOr<int>(1), absl::StatusOr<int>(2),
+ absl::StatusOr<int>(absl::InvalidArgumentError("msg")),
+ absl::StatusOr<int>(absl::InternalError("msg"))};
+ for (int i = 0; i < kNumCases; ++i) {
+ for (int j = 0; j < kNumCases; ++j) {
+ if (i == j) {
+ EXPECT_TRUE(group1[i] == group2[j]);
+ EXPECT_FALSE(group1[i] != group2[j]);
+ } else {
+ EXPECT_FALSE(group1[i] == group2[j]);
+ EXPECT_TRUE(group1[i] != group2[j]);
+ }
+ }
+ }
+}
+
+struct MyType {
+ bool operator==(const MyType&) const { return true; }
+};
+
+enum class ConvTraits { kNone = 0, kImplicit = 1, kExplicit = 2 };
+
+// This class has conversion operator to `StatusOr<T>` based on value of
+// `conv_traits`.
+template <typename T, ConvTraits conv_traits = ConvTraits::kNone>
+struct StatusOrConversionBase {};
+
+template <typename T>
+struct StatusOrConversionBase<T, ConvTraits::kImplicit> {
+ operator absl::StatusOr<T>() const& { // NOLINT
+ return absl::InvalidArgumentError("conversion to absl::StatusOr");
+ }
+ operator absl::StatusOr<T>() && { // NOLINT
+ return absl::InvalidArgumentError("conversion to absl::StatusOr");
+ }
+};
+
+template <typename T>
+struct StatusOrConversionBase<T, ConvTraits::kExplicit> {
+ explicit operator absl::StatusOr<T>() const& {
+ return absl::InvalidArgumentError("conversion to absl::StatusOr");
+ }
+ explicit operator absl::StatusOr<T>() && {
+ return absl::InvalidArgumentError("conversion to absl::StatusOr");
+ }
+};
+
+// This class has conversion operator to `T` based on the value of
+// `conv_traits`.
+template <typename T, ConvTraits conv_traits = ConvTraits::kNone>
+struct ConversionBase {};
+
+template <typename T>
+struct ConversionBase<T, ConvTraits::kImplicit> {
+ operator T() const& { return t; } // NOLINT
+ operator T() && { return std::move(t); } // NOLINT
+ T t;
+};
+
+template <typename T>
+struct ConversionBase<T, ConvTraits::kExplicit> {
+ explicit operator T() const& { return t; }
+ explicit operator T() && { return std::move(t); }
+ T t;
+};
+
+// This class has conversion operator to `absl::Status` based on the value of
+// `conv_traits`.
+template <ConvTraits conv_traits = ConvTraits::kNone>
+struct StatusConversionBase {};
+
+template <>
+struct StatusConversionBase<ConvTraits::kImplicit> {
+ operator absl::Status() const& { // NOLINT
+ return absl::InternalError("conversion to Status");
+ }
+ operator absl::Status() && { // NOLINT
+ return absl::InternalError("conversion to Status");
+ }
+};
+
+template <>
+struct StatusConversionBase<ConvTraits::kExplicit> {
+ explicit operator absl::Status() const& { // NOLINT
+ return absl::InternalError("conversion to Status");
+ }
+ explicit operator absl::Status() && { // NOLINT
+ return absl::InternalError("conversion to Status");
+ }
+};
+
+static constexpr int kConvToStatus = 1;
+static constexpr int kConvToStatusOr = 2;
+static constexpr int kConvToT = 4;
+static constexpr int kConvExplicit = 8;
+
+constexpr ConvTraits GetConvTraits(int bit, int config) {
+ return (config & bit) == 0
+ ? ConvTraits::kNone
+ : ((config & kConvExplicit) == 0 ? ConvTraits::kImplicit
+ : ConvTraits::kExplicit);
+}
+
+// This class conditionally has conversion operator to `absl::Status`, `T`,
+// `StatusOr<T>`, based on values of the template parameters.
+template <typename T, int config>
+struct CustomType
+ : StatusOrConversionBase<T, GetConvTraits(kConvToStatusOr, config)>,
+ ConversionBase<T, GetConvTraits(kConvToT, config)>,
+ StatusConversionBase<GetConvTraits(kConvToStatus, config)> {};
+
+struct ConvertibleToAnyStatusOr {
+ template <typename T>
+ operator absl::StatusOr<T>() const { // NOLINT
+ return absl::InvalidArgumentError("Conversion to absl::StatusOr");
+ }
+};
+
+// Test the rank of overload resolution for `StatusOr<T>` constructor and
+// assignment, from highest to lowest:
+// 1. T/Status
+// 2. U that has conversion operator to absl::StatusOr<T>
+// 3. U that is convertible to Status
+// 4. U that is convertible to T
+TEST(StatusOr, ConstructionFromT) {
+ // Construct absl::StatusOr<T> from T when T is convertible to
+ // absl::StatusOr<T>
+ {
+ ConvertibleToAnyStatusOr v;
+ absl::StatusOr<ConvertibleToAnyStatusOr> statusor(v);
+ EXPECT_TRUE(statusor.ok());
+ }
+ {
+ ConvertibleToAnyStatusOr v;
+ absl::StatusOr<ConvertibleToAnyStatusOr> statusor = v;
+ EXPECT_TRUE(statusor.ok());
+ }
+ // Construct absl::StatusOr<T> from T when T is explicitly convertible to
+ // Status
+ {
+ CustomType<MyType, kConvToStatus | kConvExplicit> v;
+ absl::StatusOr<CustomType<MyType, kConvToStatus | kConvExplicit>> statusor(
+ v);
+ EXPECT_TRUE(statusor.ok());
+ }
+ {
+ CustomType<MyType, kConvToStatus | kConvExplicit> v;
+ absl::StatusOr<CustomType<MyType, kConvToStatus | kConvExplicit>> statusor =
+ v;
+ EXPECT_TRUE(statusor.ok());
+ }
+}
+
+// Construct absl::StatusOr<T> from U when U is explicitly convertible to T
+TEST(StatusOr, ConstructionFromTypeConvertibleToT) {
+ {
+ CustomType<MyType, kConvToT | kConvExplicit> v;
+ absl::StatusOr<MyType> statusor(v);
+ EXPECT_TRUE(statusor.ok());
+ }
+ {
+ CustomType<MyType, kConvToT> v;
+ absl::StatusOr<MyType> statusor = v;
+ EXPECT_TRUE(statusor.ok());
+ }
+}
+
+// Construct absl::StatusOr<T> from U when U has explicit conversion operator to
+// absl::StatusOr<T>
+TEST(StatusOr, ConstructionFromTypeWithConversionOperatorToStatusOrT) {
+ {
+ CustomType<MyType, kConvToStatusOr | kConvExplicit> v;
+ absl::StatusOr<MyType> statusor(v);
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatusOr | kConvExplicit> v;
+ absl::StatusOr<MyType> statusor(v);
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToStatusOr | kConvToStatus | kConvExplicit> v;
+ absl::StatusOr<MyType> statusor(v);
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType,
+ kConvToT | kConvToStatusOr | kConvToStatus | kConvExplicit>
+ v;
+ absl::StatusOr<MyType> statusor(v);
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToStatusOr> v;
+ absl::StatusOr<MyType> statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatusOr> v;
+ absl::StatusOr<MyType> statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToStatusOr | kConvToStatus> v;
+ absl::StatusOr<MyType> statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatusOr | kConvToStatus> v;
+ absl::StatusOr<MyType> statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+}
+
+TEST(StatusOr, ConstructionFromTypeConvertibleToStatus) {
+ // Construction fails because conversion to `Status` is explicit.
+ {
+ CustomType<MyType, kConvToStatus | kConvExplicit> v;
+ absl::StatusOr<MyType> statusor(v);
+ EXPECT_FALSE(statusor.ok());
+ EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatus | kConvExplicit> v;
+ absl::StatusOr<MyType> statusor(v);
+ EXPECT_FALSE(statusor.ok());
+ EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
+ }
+ {
+ CustomType<MyType, kConvToStatus> v;
+ absl::StatusOr<MyType> statusor = v;
+ EXPECT_FALSE(statusor.ok());
+ EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatus> v;
+ absl::StatusOr<MyType> statusor = v;
+ EXPECT_FALSE(statusor.ok());
+ EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
+ }
+}
+
+TEST(StatusOr, AssignmentFromT) {
+ // Assign to absl::StatusOr<T> from T when T is convertible to
+ // absl::StatusOr<T>
+ {
+ ConvertibleToAnyStatusOr v;
+ absl::StatusOr<ConvertibleToAnyStatusOr> statusor;
+ statusor = v;
+ EXPECT_TRUE(statusor.ok());
+ }
+ // Assign to absl::StatusOr<T> from T when T is convertible to Status
+ {
+ CustomType<MyType, kConvToStatus> v;
+ absl::StatusOr<CustomType<MyType, kConvToStatus>> statusor;
+ statusor = v;
+ EXPECT_TRUE(statusor.ok());
+ }
+}
+
+TEST(StatusOr, AssignmentFromTypeConvertibleToT) {
+ // Assign to absl::StatusOr<T> from U when U is convertible to T
+ {
+ CustomType<MyType, kConvToT> v;
+ absl::StatusOr<MyType> statusor;
+ statusor = v;
+ EXPECT_TRUE(statusor.ok());
+ }
+}
+
+TEST(StatusOr, AssignmentFromTypeWithConversionOperatortoStatusOrT) {
+ // Assign to absl::StatusOr<T> from U when U has conversion operator to
+ // absl::StatusOr<T>
+ {
+ CustomType<MyType, kConvToStatusOr> v;
+ absl::StatusOr<MyType> statusor;
+ statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatusOr> v;
+ absl::StatusOr<MyType> statusor;
+ statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToStatusOr | kConvToStatus> v;
+ absl::StatusOr<MyType> statusor;
+ statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatusOr | kConvToStatus> v;
+ absl::StatusOr<MyType> statusor;
+ statusor = v;
+ EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
+ }
+}
+
+TEST(StatusOr, AssignmentFromTypeConvertibleToStatus) {
+ // Assign to absl::StatusOr<T> from U when U is convertible to Status
+ {
+ CustomType<MyType, kConvToStatus> v;
+ absl::StatusOr<MyType> statusor;
+ statusor = v;
+ EXPECT_FALSE(statusor.ok());
+ EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
+ }
+ {
+ CustomType<MyType, kConvToT | kConvToStatus> v;
+ absl::StatusOr<MyType> statusor;
+ statusor = v;
+ EXPECT_FALSE(statusor.ok());
+ EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
+ }
+}
+
+} // namespace