summaryrefslogtreecommitdiff
path: root/Instances.v
blob: 8ddf9e40f738aaf38f2c7d02a947820edf399c05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
(***************************************************************************)
(*  This is part of aac_tactics, it is distributed under the terms of the  *)
(*         GNU Lesser General Public License version 3                     *)
(*              (see file LICENSE for more details)                        *)
(*                                                                         *)
(*       Copyright 2009-2010: Thomas Braibant, Damien Pous.                *)
(***************************************************************************)


Require Export AAC.

(** Instances for aac_rewrite.*)


(* This one is not declared as an instance: this interferes badly with setoid_rewrite *)
Lemma eq_subr {X} {R} `{@Reflexive X R}: subrelation eq R.
Proof. intros x y ->. reflexivity. Qed.

(* At the moment, all the instances are exported even if they are packaged into modules. Even using LocalInstances in fact*)

Module Peano.
  Require Import Arith NArith Max Min.
  Instance aac_plus_Assoc : Associative eq plus := plus_assoc.
  Instance aac_plus_Comm : Commutative eq plus :=  plus_comm.
 
  Instance aac_mult_Comm : Commutative eq mult :=  mult_comm.
  Instance aac_mult_Assoc : Associative eq mult :=  mult_assoc.
 
  Instance aac_min_Comm : Commutative eq min :=  min_comm.
  Instance aac_min_Assoc : Associative eq min :=  min_assoc.

  Instance aac_max_Comm : Commutative eq max :=  max_comm.
  Instance aac_max_Assoc : Associative eq max :=  max_assoc.
 
  Instance aac_one : Unit eq mult 1 :=  Build_Unit eq mult 1 mult_1_l mult_1_r. 
  Instance aac_zero_plus  : Unit eq plus O := Build_Unit eq plus (O) plus_0_l plus_0_r.
  Instance aac_zero_max  :  Unit eq max  O := Build_Unit eq max 0 max_0_l max_0_r. 


  (* We also provide liftings from le to eq *)
  Instance preorder_le : PreOrder le := Build_PreOrder _ _ le_refl le_trans.
  Instance lift_le_eq : AAC_lift le eq := Build_AAC_lift eq_equivalence _.

End Peano.


Module Z.
  Require Import ZArith Zminmax.
  Open Scope Z_scope.
  Instance aac_Zplus_Assoc : Associative eq Zplus :=  Zplus_assoc.
  Instance aac_Zplus_Comm : Commutative eq Zplus :=  Zplus_comm.
 
  Instance aac_Zmult_Comm : Commutative eq Zmult :=  Zmult_comm.
  Instance aac_Zmult_Assoc : Associative eq Zmult :=  Zmult_assoc.
 
  Instance aac_Zmin_Comm : Commutative eq Zmin :=  Zmin_comm.
  Instance aac_Zmin_Assoc : Associative eq Zmin :=  Zmin_assoc.

  Instance aac_Zmax_Comm : Commutative eq Zmax :=  Zmax_comm.
  Instance aac_Zmax_Assoc : Associative eq Zmax :=  Zmax_assoc.
 
  Instance aac_one : Unit eq Zmult 1 :=  Build_Unit eq Zmult 1 Zmult_1_l Zmult_1_r. 
  Instance aac_zero_Zplus  : Unit eq Zplus 0 := Build_Unit eq Zplus 0 Zplus_0_l Zplus_0_r.

  (* We also provide liftings from le to eq *)
  Instance preorder_Zle : PreOrder Zle := Build_PreOrder _ _ Zle_refl Zle_trans.
  Instance lift_le_eq : AAC_lift Zle eq := Build_AAC_lift eq_equivalence _.

End Z.

Module Lists.
   Require Import List.
   Instance aac_append_Assoc {A} : Associative eq (@app A) := @app_assoc A.
   Instance aac_nil_append  {A} : @Unit (list A) eq (@app A) (@nil A) := Build_Unit _ (@app A) (@nil A) (@app_nil_l A) (@app_nil_r A).
   Instance aac_append_Proper {A} : Proper (eq ==> eq ==> eq) (@app A).
   Proof.
     repeat intro.
     subst.
     reflexivity.
   Qed.
End Lists.


Module N.
  Require Import NArith.
  Open Scope N_scope.
  Instance aac_Nplus_Assoc : Associative eq Nplus :=  Nplus_assoc.
  Instance aac_Nplus_Comm : Commutative eq Nplus :=  Nplus_comm.
 
  Instance aac_Nmult_Comm : Commutative eq Nmult :=  Nmult_comm.
  Instance aac_Nmult_Assoc : Associative eq Nmult :=  Nmult_assoc.
 
  Instance aac_Nmin_Comm : Commutative eq Nmin :=  N.min_comm.
  Instance aac_Nmin_Assoc : Associative eq Nmin :=  N.min_assoc.

  Instance aac_Nmax_Comm : Commutative eq Nmax :=  N.max_comm.
  Instance aac_Nmax_Assoc : Associative eq Nmax :=  N.max_assoc.
 
  Instance aac_one  : Unit eq Nmult (1)%N := Build_Unit eq Nmult (1)%N Nmult_1_l Nmult_1_r. 
  Instance aac_zero  : Unit eq Nplus (0)%N := Build_Unit eq Nplus (0)%N Nplus_0_l Nplus_0_r.
  Instance aac_zero_max  :  Unit eq Nmax 0 := Build_Unit eq Nmax 0 N.max_0_l N.max_0_r. 
   
  (* We also provide liftings from le to eq *)
  Instance preorder_le : PreOrder Nle := Build_PreOrder _ Nle N.le_refl N.le_trans.
  Instance lift_le_eq : AAC_lift Nle eq := Build_AAC_lift eq_equivalence _.

End N.

Module P.
  Require Import NArith.
  Open Scope positive_scope.
  Instance aac_Pplus_Assoc : Associative eq Pplus :=  Pplus_assoc.
  Instance aac_Pplus_Comm : Commutative eq Pplus :=  Pplus_comm.
 
  Instance aac_Pmult_Comm : Commutative eq Pmult :=  Pmult_comm.
  Instance aac_Pmult_Assoc : Associative eq Pmult :=  Pmult_assoc.
 
  Instance aac_Pmin_Comm : Commutative eq Pmin :=  Pos.min_comm.
  Instance aac_Pmin_Assoc : Associative eq Pmin :=  Pos.min_assoc.

  Instance aac_Pmax_Comm : Commutative eq Pmax :=  Pos.max_comm.
  Instance aac_Pmax_Assoc : Associative eq Pmax :=  Pos.max_assoc.
 
  Instance aac_one  : Unit eq Pmult 1 := Build_Unit eq Pmult 1 _ Pmult_1_r. 
  intros; reflexivity. Qed.          (*  TODO : add this lemma in the stdlib *)
  Instance aac_one_max  :  Unit eq Pmax 1 := Build_Unit eq Pmax 1 Pos.max_1_l Pos.max_1_r. 

  (* We also provide liftings from le to eq *)
  Instance preorder_le : PreOrder Ple := Build_PreOrder _ Ple Pos.le_refl Pos.le_trans.
  Instance lift_le_eq : AAC_lift Ple eq := Build_AAC_lift eq_equivalence _.
End P.

Module Q.
  Require Import QArith Qminmax.
  Instance aac_Qplus_Assoc : Associative Qeq Qplus :=  Qplus_assoc.
  Instance aac_Qplus_Comm : Commutative Qeq Qplus :=  Qplus_comm.
 
  Instance aac_Qmult_Comm : Commutative Qeq Qmult :=  Qmult_comm.
  Instance aac_Qmult_Assoc : Associative Qeq Qmult :=  Qmult_assoc.
 
  Instance aac_Qmin_Comm : Commutative Qeq Qmin :=  Q.min_comm.
  Instance aac_Qmin_Assoc : Associative Qeq Qmin :=  Q.min_assoc.

  Instance aac_Qmax_Comm : Commutative Qeq Qmax :=  Q.max_comm.
  Instance aac_Qmax_Assoc : Associative Qeq Qmax :=  Q.max_assoc.
 
  Instance aac_one : Unit Qeq Qmult 1 :=  Build_Unit Qeq Qmult 1 Qmult_1_l Qmult_1_r. 
  Instance aac_zero_Qplus  : Unit Qeq Qplus 0 := Build_Unit Qeq Qplus 0 Qplus_0_l Qplus_0_r.

  (* We also provide liftings from le to eq *)
  Instance preorder_le : PreOrder Qle := Build_PreOrder _ Qle Qle_refl Qle_trans.
  Instance lift_le_eq : AAC_lift Qle Qeq := Build_AAC_lift QOrderedType.QOrder.TO.eq_equiv _.

End Q.

Module Prop_ops.
  Instance aac_or_Assoc : Associative iff or. Proof.  unfold Associative; tauto.  Qed.
  Instance aac_or_Comm : Commutative iff or. Proof.  unfold Commutative; tauto.  Qed.
  Instance aac_and_Assoc : Associative iff and. Proof.  unfold Associative; tauto.  Qed.
  Instance aac_and_Comm : Commutative iff and. Proof.  unfold Commutative; tauto.  Qed.
  Instance aac_True : Unit iff or False.  Proof.  constructor; firstorder.  Qed.
  Instance aac_False : Unit iff and True.  Proof.  constructor; firstorder.  Qed.
 
  Program Instance aac_not_compat : Proper (iff ==> iff) not.
  Solve All Obligations using firstorder.

  Instance lift_impl_iff : AAC_lift Basics.impl iff := Build_AAC_lift _  _.
End Prop_ops.

Module Bool.
  Instance aac_orb_Assoc : Associative eq orb. Proof.  unfold Associative; firstorder.  Qed.
  Instance aac_orb_Comm : Commutative eq orb. Proof.  unfold Commutative; firstorder.  Qed.
  Instance aac_andb_Assoc : Associative eq andb. Proof.  unfold Associative; firstorder.  Qed.
  Instance aac_andb_Comm : Commutative eq andb. Proof.  unfold Commutative; firstorder.  Qed.
  Instance aac_true : Unit eq orb false.  Proof.  constructor; firstorder.  Qed.
  Instance aac_false : Unit eq andb true.  Proof.  constructor; intros [|];firstorder.  Qed.
 
  Instance negb_compat : Proper (eq ==> eq) negb.  Proof. intros [|] [|]; auto. Qed.
End Bool.

Module Relations.
  Require Import Relations.
  Section defs.
    Variable T : Type.
    Variables R S: relation T.
    Definition inter : relation T := fun x y => R x y /\ S x y.
    Definition compo : relation T := fun x y => exists z : T, R x z /\ S z y.
    Definition negr : relation T := fun x y => ~ R x y.
    (* union and converse are already defined in the standard library *)

    Definition bot : relation T := fun _ _ => False.
    Definition top : relation T := fun _ _ => True.
  End defs.
 
  Instance eq_same_relation T : Equivalence (same_relation T). Proof. firstorder. Qed.
 
  Instance aac_union_Comm T : Commutative (same_relation T) (union T). Proof. unfold Commutative; compute; intuition.  Qed.
  Instance aac_union_Assoc T : Associative (same_relation T) (union T). Proof. unfold Associative; compute; intuition.  Qed.
  Instance aac_bot T : Unit (same_relation T) (union T) (bot T). Proof. constructor; compute; intuition. Qed.

  Instance aac_inter_Comm T : Commutative (same_relation T) (inter T). Proof. unfold Commutative; compute; intuition.  Qed.
  Instance aac_inter_Assoc T : Associative (same_relation T) (inter T). Proof. unfold Associative; compute; intuition.  Qed.
  Instance aac_top T : Unit (same_relation T) (inter T) (top T). Proof. constructor; compute; intuition. Qed.
 
  (* note that we use [eq] directly as a neutral element for composition *)
  Instance aac_compo T : Associative (same_relation T) (compo T). Proof. unfold Associative; compute; firstorder. Qed.
  Instance aac_eq T : Unit (same_relation T) (compo T) (eq). Proof.  compute; firstorder subst; trivial. Qed.

  Instance negr_compat T : Proper (same_relation T ==> same_relation T) (negr T).
  Proof. compute. firstorder. Qed.

  Instance transp_compat T : Proper (same_relation T ==> same_relation T) (transp T).
  Proof. compute. firstorder. Qed.

  Instance clos_trans_incr T : Proper (inclusion T ==> inclusion T) (clos_trans T).
  Proof.
    intros  R S H x y Hxy. induction Hxy.
      constructor 1. apply H. assumption.
      econstructor 2; eauto 3.
  Qed.
  Instance clos_trans_compat T: Proper (same_relation T ==> same_relation T) (clos_trans T).
  Proof. intros R S H; split; apply clos_trans_incr, H. Qed.

  Instance clos_refl_trans_incr T : Proper (inclusion T ==> inclusion T) (clos_refl_trans T).
  Proof.
    intros R S H x y Hxy. induction Hxy.
      constructor 1. apply H. assumption.
      constructor 2.
      econstructor 3; eauto 3.
  Qed.
  Instance clos_refl_trans_compat T : Proper (same_relation T ==> same_relation T) (clos_refl_trans T).
  Proof. intros R S H; split; apply clos_refl_trans_incr, H. Qed.

  Instance preorder_inclusion T : PreOrder (inclusion T).
  Proof. constructor; unfold Reflexive, Transitive, inclusion; intuition.   Qed.

  Instance lift_inclusion_same_relation T: AAC_lift (inclusion T) (same_relation T) :=
    Build_AAC_lift (eq_same_relation T) _.
  Proof.  firstorder. Qed.

End Relations.

Module All.
  Export Peano.
  Export Z.
  Export P.
  Export N.
  Export Prop_ops.
  Export Bool.
  Export Relations.
End All.
 
(* Here, we should not see any instance of our classes.
   Print HintDb typeclass_instances.
*)