summaryrefslogtreecommitdiff
path: root/AAC.v
blob: bdbe1b0d59cc89887328e9e7fc0d28048af5783d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
(***************************************************************************)
(*  This is part of aac_tactics, it is distributed under the terms of the  *)
(*         GNU Lesser General Public License version 3                     *)
(*              (see file LICENSE for more details)                        *)
(*                                                                         *)
(*       Copyright 2009-2010: Thomas Braibant, Damien Pous.                *)
(***************************************************************************)

(** * Theory file for the aac_rewrite tactic

   We define several base classes to package associative and possibly
   commutative operators, and define a data-type for reified (or
   quoted) expressions (with morphisms).

   We then define a reflexive decision procedure to decide the
   equality of reified terms: first normalize reified terms, then
   compare them. This allows us to close transitivity steps
   automatically, in the [aac_rewrite] tactic.
   
   We restrict ourselves to the case where all symbols operate on a
   single fixed type. In particular, this means that we cannot handle
   situations like   

   [H: forall x y, nat_of_pos (pos_of_nat (x) + y) + x = ....]

   where one occurence of [+] operates on nat while the other one
   operates on positive. *)

Require Import Arith NArith. 
Require Import List.
Require Import FMapPositive FMapFacts.
Require Import RelationClasses Equality.
Require Export Morphisms.

Set Implicit Arguments.
Unset Automatic Introduction.
Open Scope signature_scope.

(** * Environments for the reification process: we use positive maps to index elements *)

Section sigma.
  Definition sigma := PositiveMap.t.
  Definition sigma_get A (null : A) (map : sigma A) (n : positive) : A :=
    match PositiveMap.find n map with 
      | None => null
      | Some x => x
    end.
  Definition sigma_add := @PositiveMap.add.
  Definition sigma_empty := @PositiveMap.empty.
End sigma.

(** * Packaging structures *)

(** ** Free symbols  *)
Module Sym.
  Section t.
  Context {X} {R : relation X} .
  
  (** type of an arity  *)
  Fixpoint type_of  (n: nat) :=
  match n with
    | O => X
    | S n => X -> type_of  n
  end.

  (** relation to be preserved at an arity  *)
  Fixpoint rel_of n : relation (type_of n) := 
    match n with
      | O => R
      | S n => respectful R (rel_of n)
    end.
  
  (** a symbol package contains an arity, 
     a value of the corresponding type, 
     and a proof that the value is a proper morphism *)
  Record pack  : Type := mkPack {
    ar : nat;
    value : type_of  ar;
    morph : Proper (rel_of ar) value
  }.

  (** helper to build default values, when filling reification environments *)
  Program Definition null (H: Equivalence R) (x : X)  := mkPack 0 x _.
    
  End t.

End Sym.

(** ** Associative commutative operations (commutative monoids) 
   
   See #<a href="Instances.html">Instances.v</a># for concrete instances of these classes.

*)

Class Op_AC (X:Type) (R: relation X) (plus: X -> X -> X) (zero:X) := {
  plus_compat:> Proper (R ==> R ==> R) plus;
  plus_neutral_left: forall x, R (plus zero x) x;
  plus_assoc: forall x y z, R (plus x (plus y z)) (plus (plus x y) z);
  plus_com: forall x y, R (plus x y) (plus y x)
}.

Module Sum.
  Section t.
  Context {X : Type} {R: relation X}.
  Class pack : Type := mkPack {
    plus : X -> X -> X;
    zero : X;
    opac :> @Op_AC X R plus zero
  }.
  End t.
End Sum.
  
    

(** ** Associative operations (monoids) *)
Class Op_A (X:Type) (R:relation X) (dot: X -> X -> X) (one: X) := {
  dot_compat:> Proper (R ==> R ==> R) dot;
  dot_neutral_left: forall x, R (dot one x) x;
  dot_neutral_right: forall x, R (dot x one) x;
  dot_assoc: forall x y z, R (dot x (dot y z)) (dot (dot x y) z)
}.


Module Prd.
  Section t.
  Context {X : Type} {R: relation X}.
  Class pack : Type := mkPack {
    dot : X -> X -> X;
    one : X;
    opa :> @Op_A X R dot one
  }.
  End t.
End Prd.


(** an helper lemma to derive an A class out of an AC one (not
   declared as an instance to avoid useless branches in typeclass
   resolution) *)
Lemma AC_A {X} {R:relation X} {EQ: Equivalence R} {plus} {zero} (op: Op_AC R plus zero): Op_A R plus zero.
Proof.
  split; try apply op.
   intros. rewrite plus_com. apply op.
Qed.



(** * Utilities for the evaluation function *)
Section copy.

  Context  {X} {R: relation X} {HR : @Equivalence X R} {plus} {zero} {op: @Op_AC X R plus zero}.

  (* copy n x = x+...+x (n times) *)
  Definition copy n x := Prect (fun _ => X) x (fun _ xn => plus x xn) n.
  
  Lemma copy_plus : forall n m x, R (copy (n+m) x) (plus (copy n x) (copy m x)).
  Proof.
    unfold copy.
    induction n using Pind; intros m x.
     rewrite Prect_base. rewrite <- Pplus_one_succ_l. rewrite Prect_succ. reflexivity.
     rewrite Pplus_succ_permute_l. rewrite 2Prect_succ. rewrite IHn. apply plus_assoc. 
  Qed.

  Global Instance copy_compat n: Proper (R ==> R) (copy n).
  Proof.
    unfold copy.
    induction n using Pind; intros x y H.
     rewrite 2Prect_base. assumption. 
     rewrite 2Prect_succ. apply plus_compat; auto. 
  Qed.

End copy.

(** * Utilities for positive numbers
   which we use as:
     - indices for morphisms and symbols
     - multiplicity of terms in sums
 *)
Notation idx := positive.

Fixpoint eq_idx_bool i j :=
  match i,j with 
    | xH, xH => true
    | xO i, xO j => eq_idx_bool i j
    | xI i, xI j => eq_idx_bool i j
    | _, _ => false
  end.

Fixpoint idx_compare i j :=
  match i,j with 
    | xH, xH => Eq
    | xH, _ => Lt
    | _, xH => Gt
    | xO i, xO j => idx_compare i j
    | xI i, xI j => idx_compare i j
    | xI _, xO _ => Gt
    | xO _, xI _ => Lt
  end.

Notation pos_compare := idx_compare (only parsing).

(** specification predicate for boolean binary functions *)
Inductive decide_spec {A} {B} (R : A -> B -> Prop) (x : A) (y : B) : bool -> Prop :=
| decide_true : R x y -> decide_spec R x y true
| decide_false : ~(R x y) -> decide_spec R x y false.

Lemma eq_idx_spec : forall i j, decide_spec (@eq _) i j (eq_idx_bool i j).
Proof.
  induction i; destruct j; simpl; try (constructor; congruence).
   case (IHi j); constructor; congruence.
   case (IHi j); constructor; congruence.
Qed. 

(** weak specification predicate for comparison functions: only the 'Eq' case is specified *)
Inductive compare_weak_spec A: A -> A -> comparison -> Prop :=
| pcws_eq: forall i, compare_weak_spec i i Eq
| pcws_lt: forall i j, compare_weak_spec i j Lt
| pcws_gt: forall i j, compare_weak_spec i j Gt.

Lemma pos_compare_weak_spec: forall i j, compare_weak_spec i j (pos_compare i j).
Proof. induction i; destruct j; simpl; try constructor; case (IHi j); intros; constructor. Qed.

Lemma idx_compare_reflect_eq: forall i j, idx_compare i j = Eq -> i=j.
Proof. intros i j. case (pos_compare_weak_spec i j); intros; congruence. Qed.


(** * Dependent types utilities *)
Notation cast T H u := (eq_rect _ T u _ H).

Section dep.
  Variable U: Type.
  Variable T: U -> Type.

  Lemma cast_eq: (forall u v: U, {u=v}+{u<>v}) -> 
    forall A (H: A=A) (u: T A), cast T H u = u.
  Proof. intros. rewrite <- Eqdep_dec.eq_rect_eq_dec; trivial. Qed. 

  Variable f: forall A B, T A -> T B -> comparison.
  Definition reflect_eqdep := forall A u B v (H: A=B), @f A B u v = Eq -> cast T H u = v.

  (* these lemmas have to remain transparent to get structural recursion
     in the lemma [tcompare_weak_spec] below *)
  Lemma reflect_eqdep_eq: reflect_eqdep -> forall A u v, @f A A u v = Eq -> u = v.
  Proof. intros H A u v He. apply (H _ _ _ _ eq_refl He). Defined. 

  Lemma reflect_eqdep_weak_spec: reflect_eqdep -> forall A u v, compare_weak_spec u v (@f A A u v).
  Proof.
    intros. case_eq (f u v); try constructor.
    intro H'. apply reflect_eqdep_eq in H'. subst. constructor. assumption.
  Defined.
End dep.


(** * Utilities about lists and multisets  *)

(** finite multisets are represented with ordered lists with multiplicities *)
Definition mset A := list (A*positive).

(** lexicographic composition of comparisons (this is a notation to keep it lazy) *)
Notation lex e f := (match e with Eq => f | _ => e end).   


Section lists.

  (** comparison function  *)
  Section c.
    Variables A B: Type.
    Variable compare: A -> B -> comparison.
    Fixpoint list_compare h k := 
      match h,k with
        | nil, nil => Eq
        | nil, _   => Lt
        | _,   nil => Gt
      | u::h, v::k => lex (compare u v) (list_compare h k)
      end.  
  End c.
  Definition mset_compare A B compare: mset A -> mset B -> comparison :=
    list_compare (fun un vm => let '(u,n) := un in let '(v,m) := vm in lex (compare u v) (pos_compare n m)).

  Section list_compare_weak_spec.
    Variable A: Type.
    Variable compare: A -> A -> comparison.
    Hypothesis Hcompare: forall u v, compare_weak_spec u v (compare u v).
    (* this lemma has to remain transparent to get structural recursion 
       in the lemma [tcompare_weak_spec] below *)
    Lemma list_compare_weak_spec: forall h k, compare_weak_spec h k (list_compare compare h k).
    Proof.
      induction h as [|u h IHh]; destruct k as [|v k]; simpl; try constructor.
      case (Hcompare u v); try constructor.
      case (IHh k); intros; constructor.
    Defined.
  End list_compare_weak_spec.

  Section mset_compare_weak_spec.
    Variable A: Type.
    Variable compare: A -> A -> comparison.
    Hypothesis Hcompare: forall u v, compare_weak_spec u v (compare u v).
    (* this lemma has to remain transparent to get structural recursion 
       in the lemma [tcompare_weak_spec] below *)
    Lemma mset_compare_weak_spec: forall h k, compare_weak_spec h k (mset_compare compare h k).
    Proof.
      apply list_compare_weak_spec.
      intros [u n] [v m].
       case (Hcompare u v); try constructor.
       case (pos_compare_weak_spec n m); try constructor.
    Defined.
  End mset_compare_weak_spec.

  (** (sorted) merging functions  *)
  Section m.
    Variable A: Type.
    Variable compare: A -> A -> comparison.

    Fixpoint merge_msets l1 :=
      match l1 with
        | nil => fun l2 => l2
        | (h1,n1)::t1 =>
          let fix merge_aux l2 :=
            match l2 with
              | nil => l1
              | (h2,n2)::t2 =>
                match compare h1 h2 with
                  | Eq => (h1,Pplus n1 n2)::merge_msets t1 t2
                  | Lt => (h1,n1)::merge_msets t1 l2
                  | Gt => (h2,n2)::merge_aux t2
                end
            end
            in merge_aux
      end.

    (** interpretation of a list with a constant and a binary operation *)
    Variable B: Type.
    Variable map: A -> B.
    Variable b2: B -> B -> B.
    Variable b0: B.
    Fixpoint fold_map l :=
      match l with
        | nil => b0
        | u::nil => map u
        | u::l => b2 (map u) (fold_map l)
      end.

    (** mapping and merging *)
    Variable merge: A -> list B -> list B.
    Fixpoint merge_map (l: list A): list B :=
      match l with
        | nil => nil
        | u::l => merge u (merge_map l)
      end.

  End m.

End lists.



(** * Reification, normalisation, and decision  *)
Section s.
  Context {X} {R: relation X} {E: @Equivalence X R}.
  Infix "==" := R (at level 80).

  (* We use environments to store the various operators and the
     morphisms.*)

  Variable e_sym: idx -> @Sym.pack X R.
  Variable e_prd: idx -> @Prd.pack X R.
  Variable e_sum: idx -> @Sum.pack X R.
  Hint Resolve e_sum e_prd: typeclass_instances.


  (** ** Almost normalised syntax
     a term in [T] is in normal form if:
     - sums do not contain sums
     - products do not contain products
     - there are no unary sums or products
     - lists and msets are lexicographically sorted according to the order we define below
     
     [vT n] denotes the set of term vectors of size [n] (the mutual dependency could be removed), 

     Note that [T] and [vT] depend on the [e_sym] environment (which
     contains, among other things, the arity of symbols)
     *)
  Inductive T: Type := 
  | sum: idx -> mset T -> T
  | prd: idx -> list T -> T
  | sym: forall i, vT (Sym.ar (e_sym i)) -> T
  with vT: nat -> Type :=
  | vnil: vT O
  | vcons: forall n, T -> vT n -> vT (S n).


  (** lexicographic rpo over the normalised syntax *)
  Fixpoint compare (u v: T) :=
    match u,v with 
      | sum i l, sum j vs => lex (idx_compare i j) (mset_compare compare l vs)
      | prd i l, prd j vs => lex (idx_compare i j) (list_compare compare l vs)
      | sym i l, sym j vs => lex (idx_compare i j) (vcompare l vs)
      | sum _ _, _        => Lt
      | _      , sum _ _  => Gt
      | prd _ _, _        => Lt
      | _      , prd _ _  => Gt
    end
  with vcompare i j (us: vT i) (vs: vT j) :=
    match us,vs with
      | vnil, vnil => Eq
      | vnil, _    => Lt
      | _,    vnil => Gt
      | vcons _ u us, vcons _ v vs => lex (compare u v) (vcompare us vs)
    end.


  (** we need to show that compare reflects equality
     (this is because we work with msets rather than lists with arities) 
    *)

  Lemma tcompare_weak_spec: forall (u v : T), compare_weak_spec u v (compare u v)
  with vcompare_reflect_eqdep: forall i us j vs (H: i=j), vcompare us vs = Eq -> cast vT H us = vs.
  Proof.
    induction u.
     destruct v; simpl; try constructor.
      case (pos_compare_weak_spec p p0); intros; try constructor.
      case (mset_compare_weak_spec compare tcompare_weak_spec m m0); intros; try constructor.
     destruct v; simpl; try constructor.
      case (pos_compare_weak_spec p p0); intros; try constructor.
      case (list_compare_weak_spec compare tcompare_weak_spec l l0); intros; try constructor.
     destruct v0; simpl; try constructor.
      case_eq (idx_compare i i0); intro Hi; try constructor.
      apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst. (* the [symmetry] is required ! *)
      case_eq (vcompare v v0); intro Hv; try constructor.
      rewrite <- (vcompare_reflect_eqdep _ _ _ _ eq_refl Hv). constructor. 

    induction us; destruct vs; simpl; intros H Huv; try discriminate.
     apply cast_eq, eq_nat_dec. 
     injection H; intro Hn.
     revert Huv; case (tcompare_weak_spec t t0); intros; try discriminate. 
     symmetry in Hn. subst.   (* symmetry required *)
     rewrite <- (IHus _ _ eq_refl Huv). 
     apply cast_eq, eq_nat_dec.
  Qed.

  (** ** Evaluation from syntax to the abstract domain *)
  Fixpoint eval u: X :=
    match u with 
      | sum i l => fold_map (fun un => let '(u,n):=un in @copy _ (@Sum.plus _ _ (e_sum i)) n (eval u))
                            (@Sum.plus _ _ (e_sum i)) (@Sum.zero _ _ (e_sum i)) l 
      | prd i l => fold_map eval 
                            (@Prd.dot _ _ (e_prd i)) (@Prd.one _ _ (e_prd i)) l 
      | sym i v => @eval_aux _ v (Sym.value (e_sym i))
    end
  with eval_aux i (v: vT i): Sym.type_of  i -> X :=
    match v with
      | vnil => fun f => f
      | vcons _ u v => fun f => eval_aux v (f (eval u))
    end.


  Instance eval_aux_compat i (l: vT i): Proper (@Sym.rel_of X R i ==> R) (eval_aux l).
  Proof.
    induction l; simpl; repeat intro.
     assumption.
     apply IHl, H. reflexivity. 
  Qed.


  (** ** Normalisation *)

  (** auxiliary functions, to clean up sums and products  *)
  Definition sum' i (u: mset T): T :=
    match u with 
      | (u,xH)::nil => u
      | _ => sum i u
    end.
  Definition is_sum i (u: T): option (mset T) :=
    match u with 
      | sum j l => if eq_idx_bool j i then Some l else None
      | u => None
    end.
  Definition copy_mset n (l: mset T): mset T :=
    match n with 
      | xH => l
      | _ => List.map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l
    end.
  Definition sum_to_mset i (u: T) n := 
    match is_sum i u with 
      | Some l' => copy_mset n l' 
      | None => (u,n)::nil 
    end.

  Definition prd' i (u: list T): T :=
    match u with 
      | u::nil => u
      | _ => prd i u
    end.
  Definition is_prd i (u: T): option (list T) :=
    match u with 
      | prd j l => if eq_idx_bool j i then Some l else None
      | u => None
    end.
  Definition prd_to_list i (u: T) := 
    match is_prd i u with
      | Some l' => l' 
      | None => u::nil 
    end.


  (** we deduce the normalisation function *)
  Fixpoint norm u :=
    match u with 
      | sum i l => sum' i (merge_map (fun un l => let '(u,n):=un in 
                                      merge_msets compare (sum_to_mset i (norm u) n) l) l)
      | prd i l => prd' i (merge_map (fun u l => prd_to_list i (norm u) ++ l) l)
      | sym i l => sym i (vnorm l)
    end
  with vnorm i (l: vT i): vT i := 
    match l with
      | vnil => vnil
      | vcons _ u l => vcons (norm u) (vnorm l)
    end.


  (** ** Correctness *)

  (** auxiliary lemmas about sums  *)
  Lemma sum'_sum i (l: mset T): eval (sum' i l) ==eval (sum i l) .
  Proof. 
    intros i [|? [|? ?]].
     reflexivity.
     destruct p; destruct p; simpl; reflexivity.
     destruct p; destruct p; simpl; reflexivity.
  Qed.

  Lemma eval_sum_cons i n a (l: mset T): 
    (eval (sum i ((a,n)::l))) == (@Sum.plus _ _ (e_sum i) (@copy _ (@Sum.plus _ _ (e_sum i)) n (eval a)) (eval (sum i l))).
  Proof.
    intros i n a [|[b m] l]; simpl. 
     rewrite plus_com, plus_neutral_left. reflexivity.
     reflexivity.
  Qed.        

  Lemma eval_sum_app i (h k: mset T):  eval (sum i (h++k)) == @Sum.plus _ _ (e_sum i) (eval (sum i h)) (eval (sum i k)).
  Proof.
    induction h; intro k. 
     simpl. rewrite plus_neutral_left. reflexivity.
     simpl app. destruct a. rewrite 2 eval_sum_cons, IHh, plus_assoc. reflexivity.
  Qed.        

  Lemma eval_merge_sum i (h k: mset T): 
    eval (sum i (merge_msets compare h k)) == @Sum.plus _ _ (e_sum i) (eval (sum i h)) (eval (sum i k)).
  Proof.
    induction h as [|[a n] h IHh]; intro k. 
     simpl. rewrite plus_neutral_left. reflexivity.
     induction k as [|[b m] k IHk].
      simpl. setoid_rewrite plus_com. rewrite plus_neutral_left. reflexivity.
      simpl merge_msets. rewrite eval_sum_cons. destruct (tcompare_weak_spec a b) as [a|a b|a b]. 
       rewrite 2eval_sum_cons. rewrite IHh. rewrite <- plus_assoc. setoid_rewrite plus_assoc at 3.
       setoid_rewrite plus_com at 5. rewrite !plus_assoc. rewrite copy_plus. reflexivity.

       rewrite eval_sum_cons. rewrite IHh. apply plus_assoc.

       rewrite <- eval_sum_cons. setoid_rewrite eval_sum_cons at 3. 
       rewrite plus_com, <- plus_assoc. rewrite plus_com in IHk. rewrite <- IHk.
       rewrite eval_sum_cons. apply plus_compat; reflexivity. 
  Qed.

  Inductive sum_spec: T -> option (mset T) -> Prop :=
  | ss_sum1: forall i l, sum_spec (sum i l) (Some l)
  | ss_sum2: forall j i l, i<>j -> sum_spec (sum i l) None
  | ss_prd: forall i l, sum_spec (prd i l) None
  | ss_sym: forall i l, sum_spec (@sym i l) None.
  Lemma is_sum_spec: forall i (a: T), sum_spec a (is_sum i a).
  Proof.
    intros i [j l|j l|j l]; simpl; try constructor.
    case eq_idx_spec; intro.
     subst. constructor.
     econstructor. eassumption.
  Qed.

  Lemma eval_is_sum: forall i (a: T) k, is_sum i a = Some k -> eval (sum i k) = eval a.
  Proof.
    intros i [j l|j l|j l] k; simpl is_sum; try (intro; discriminate).
    case eq_idx_spec; intros ? H. 
     injection H. clear H. intros <-. congruence. 
     discriminate.
  Qed.

  Lemma copy_mset' n (l: mset T): 
    copy_mset n l = List.map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l.
  Proof.
    intros. destruct n; try reflexivity.
    simpl. induction l as [|[a l] IHl]; simpl; congruence. 
  Qed.

  
  Lemma copy_mset_succ i n (l: mset T): 
    eval (sum i (copy_mset (Psucc n) l)) == @Sum.plus _ _ (e_sum i) (eval (sum i l)) (eval (sum i (copy_mset n l))).
  Proof.
    intros. rewrite 2copy_mset'.
    induction l as [|[a m] l IHl].
     simpl eval at 2. rewrite plus_neutral_left. destruct n; reflexivity.
     simpl map. rewrite ! eval_sum_cons. rewrite IHl. 
     rewrite Pmult_Sn_m. rewrite copy_plus. rewrite <- !plus_assoc. apply plus_compat; try reflexivity.
     setoid_rewrite plus_com at 3. rewrite <- !plus_assoc. apply plus_compat; try reflexivity. apply plus_com. 
  Qed.

  Lemma eval_sum_to_mset: forall i n a, eval (sum i (sum_to_mset i a n)) == @copy _  (@Sum.plus _ _ (e_sum i)) n (eval a).
  Proof.
    intros. unfold sum_to_mset.
    case_eq (is_sum i a).
     intros k Hk. induction n using Pind. 
       simpl copy_mset. rewrite (eval_is_sum _ _ Hk). reflexivity.
       rewrite copy_mset_succ. rewrite IHn. rewrite (eval_is_sum _ _ Hk).
       unfold copy at 2. rewrite Prect_succ. reflexivity.
     reflexivity.
  Qed.


  (** auxiliary lemmas about products  *)
  Lemma prd'_prd i (l: list T): eval (prd' i l) == eval (prd i l).
  Proof. intros i [|? [|? ?]]; reflexivity. Qed.

  Lemma eval_prd_cons i a (l: list T): eval (prd i (a::l)) == @Prd.dot _ _ (e_prd i) (eval a) (eval (prd i l)).
  Proof.
    intros i a [|b l]; simpl. 
     rewrite dot_neutral_right. reflexivity.
     reflexivity.
  Qed.        

  Lemma eval_prd_app i (h k: list T): eval (prd i (h++k)) == @Prd.dot _ _ (e_prd i) (eval (prd i h)) (eval (prd i k)).
  Proof.
    induction h; intro k. 
     simpl. rewrite dot_neutral_left. reflexivity.
     simpl app. rewrite 2 eval_prd_cons, IHh, dot_assoc. reflexivity.
  Qed.        

  Lemma eval_is_prd: forall i (a: T) k, is_prd i a = Some k -> eval (prd i k) = eval a.
  Proof.
    intros i [j l|j l|j l] k; simpl is_prd; try (intro; discriminate).
    case eq_idx_spec; intros ? H. 
     injection H. clear H. intros <-. subst. congruence.
     discriminate.
  Qed.

  Lemma eval_prd_to_list: forall i a, eval (prd i (prd_to_list i a)) = eval a.
  Proof.
    intros. unfold prd_to_list.
    case_eq (is_prd i a).
     intros k Hk. apply eval_is_prd. assumption.
     reflexivity.
  Qed.


  (** correctness of the normalisation function *)
  Theorem eval_norm: forall u, eval (norm u) == eval u
    with eval_norm_aux: forall i (l: vT i) (f: Sym.type_of i), 
      Proper (@Sym.rel_of X R i) f -> eval_aux (vnorm l) f == eval_aux l f.
  Proof.
    induction u.
     simpl norm. rewrite sum'_sum. induction m as [|[u n] m IHm]. 
      reflexivity.
      simpl merge_map. rewrite eval_merge_sum.
      rewrite eval_sum_to_mset, IHm, eval_norm.
      rewrite eval_sum_cons. reflexivity.

     simpl norm. rewrite prd'_prd. induction l. 
      reflexivity.
      simpl merge_map.
      rewrite eval_prd_app.
      rewrite eval_prd_to_list, IHl, eval_norm.
      rewrite eval_prd_cons. reflexivity.

     simpl. apply eval_norm_aux, Sym.morph. 


    induction l; simpl; intros f Hf.
     reflexivity.
     rewrite eval_norm. apply IHl, Hf. reflexivity.
  Qed.

  (** corollaries, for goal normalisation or decision *)
  Lemma normalise: forall (u v: T), eval (norm u) == eval (norm v) -> eval u == eval v.
  Proof. intros u v. rewrite 2 eval_norm. trivial. Qed.
    
  Lemma compare_reflect_eq: forall u v, compare u v = Eq -> eval u == eval v.
  Proof. intros u v. case (tcompare_weak_spec u v); intros; try congruence. reflexivity. Qed.

  Lemma decide: forall (u v: T), compare (norm u) (norm v) = Eq -> eval u == eval v.
  Proof. intros u v H. apply normalise. apply compare_reflect_eq. apply H. Qed.

End s.
Declare ML Module "aac_tactics".