1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Created by Hugo Herbelin from contents related to lemma proofs in
file command.ml, Aug 2009 *)
open CErrors
open Util
open Pp
open Names
open Constr
open Declarations
open Declareops
open Entries
open Nameops
open Globnames
open Decls
open Decl_kinds
open Declare
open Pretyping
open Termops
open Namegen
open Reductionops
open Constrintern
open Impargs
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
type 'a declaration_hook = Decl_kinds.locality -> Globnames.global_reference -> 'a
let mk_hook hook = hook
let call_hook fix_exn hook l c =
try hook l c
with e when CErrors.noncritical e ->
let e = CErrors.push e in
iraise (fix_exn e)
(* Support for mutually proved theorems *)
let retrieve_first_recthm uctx = function
| VarRef id ->
(NamedDecl.get_value (Global.lookup_named id),variable_opacity id)
| ConstRef cst ->
let cb = Global.lookup_constant cst in
(* we get the right order somehow but surely it could be enforced in a better way *)
let uctx = UState.context uctx in
let inst = Univ.UContext.instance uctx in
let map (c, ctx) = Vars.subst_instance_constr inst c in
(Option.map map (Global.body_of_constant_body cb), is_opaque cb)
| _ -> assert false
let adjust_guardness_conditions const = function
| [] -> const (* Not a recursive statement *)
| possible_indexes ->
(* Try all combinations... not optimal *)
let env = Global.env() in
{ const with const_entry_body =
Future.chain const.const_entry_body
(fun ((body, ctx), eff) ->
match Constr.kind body with
| Fix ((nv,0),(_,_,fixdefs as fixdecls)) ->
(* let possible_indexes =
List.map2 (fun i c -> match i with Some i -> i | None ->
List.interval 0 (List.length ((lam_assum c))))
lemma_guard (Array.to_list fixdefs) in
*)
let add c cb e =
let exists c e =
try ignore(Environ.lookup_constant c e); true
with Not_found -> false in
if exists c e then e else Environ.add_constant c cb e in
let env = List.fold_left (fun env { eff } ->
match eff with
| SEsubproof (c, cb,_) -> add c cb env
| SEscheme (l,_) ->
List.fold_left (fun e (_,c,cb,_) -> add c cb e) env l)
env (Safe_typing.side_effects_of_private_constants eff) in
let indexes =
search_guard env
possible_indexes fixdecls in
(mkFix ((indexes,0),fixdecls), ctx), eff
| _ -> (body, ctx), eff) }
let find_mutually_recursive_statements sigma thms =
let n = List.length thms in
let inds = List.map (fun (id,(t,impls)) ->
let (hyps,ccl) = EConstr.decompose_prod_assum sigma t in
let x = (id,(t,impls)) in
let whnf_hyp_hds = EConstr.map_rel_context_in_env
(fun env c -> fst (Reductionops.whd_all_stack env sigma c))
(Global.env()) hyps in
let ind_hyps =
List.flatten (List.map_i (fun i decl ->
let t = RelDecl.get_type decl in
match EConstr.kind sigma t with
| Ind ((kn,_ as ind),u) when
let mind = Global.lookup_mind kn in
mind.mind_finite <> Declarations.CoFinite ->
[ind,x,i]
| _ ->
[]) 0 (List.rev (List.filter Context.Rel.Declaration.is_local_assum whnf_hyp_hds))) in
let ind_ccl =
let cclenv = EConstr.push_rel_context hyps (Global.env()) in
let whnf_ccl,_ = whd_all_stack cclenv Evd.empty ccl in
match EConstr.kind sigma whnf_ccl with
| Ind ((kn,_ as ind),u) when
let mind = Global.lookup_mind kn in
Int.equal mind.mind_ntypes n && mind.mind_finite == Declarations.CoFinite ->
[ind,x,0]
| _ ->
[] in
ind_hyps,ind_ccl) thms in
let inds_hyps,ind_ccls = List.split inds in
let of_same_mutind ((kn,_),_,_) = function ((kn',_),_,_) -> MutInd.equal kn kn' in
(* Check if all conclusions are coinductive in the same type *)
(* (degenerated cartesian product since there is at most one coind ccl) *)
let same_indccl =
List.cartesians_filter (fun hyp oks ->
if List.for_all (of_same_mutind hyp) oks
then Some (hyp::oks) else None) [] ind_ccls in
let ordered_same_indccl =
List.filter (List.for_all_i (fun i ((kn,j),_,_) -> Int.equal i j) 0) same_indccl in
(* Check if some hypotheses are inductive in the same type *)
let common_same_indhyp =
List.cartesians_filter (fun hyp oks ->
if List.for_all (of_same_mutind hyp) oks
then Some (hyp::oks) else None) [] inds_hyps in
let ordered_inds,finite,guard =
match ordered_same_indccl, common_same_indhyp with
| indccl::rest, _ ->
assert (List.is_empty rest);
(* One occ. of common coind ccls and no common inductive hyps *)
if not (List.is_empty common_same_indhyp) then
Flags.if_verbose Feedback.msg_info (str "Assuming mutual coinductive statements.");
flush_all ();
indccl, true, []
| [], _::_ ->
let () = match same_indccl with
| ind :: _ ->
if List.distinct_f ind_ord (List.map pi1 ind)
then
Flags.if_verbose Feedback.msg_info
(strbrk
("Coinductive statements do not follow the order of "^
"definition, assuming the proof to be by induction."));
flush_all ()
| _ -> ()
in
let possible_guards = List.map (List.map pi3) inds_hyps in
(* assume the largest indices as possible *)
List.last common_same_indhyp, false, possible_guards
| _, [] ->
user_err Pp.(str
("Cannot find common (mutual) inductive premises or coinductive" ^
" conclusions in the statements."))
in
(finite,guard,None), ordered_inds
let look_for_possibly_mutual_statements sigma = function
| [id,(t,impls)] ->
(* One non recursively proved theorem *)
None,[id,(t,impls)],None
| _::_ as thms ->
(* More than one statement and/or an explicit decreasing mark: *)
(* we look for a common inductive hyp or a common coinductive conclusion *)
let recguard,ordered_inds = find_mutually_recursive_statements sigma thms in
let thms = List.map pi2 ordered_inds in
Some recguard,thms, Some (List.map (fun (_,_,i) -> succ i) ordered_inds)
| [] -> anomaly (Pp.str "Empty list of theorems.")
(* Saving a goal *)
let save ?export_seff id const uctx do_guard (locality,poly,kind) hook =
let fix_exn = Future.fix_exn_of const.Entries.const_entry_body in
try
let const = adjust_guardness_conditions const do_guard in
let k = Kindops.logical_kind_of_goal_kind kind in
let should_suggest = const.const_entry_opaque && Option.is_empty const.const_entry_secctx in
let l,r = match locality with
| Discharge when Lib.sections_are_opened () ->
let c = SectionLocalDef const in
let _ = declare_variable id (Lib.cwd(), c, k) in
let () = if should_suggest
then Proof_using.suggest_variable (Global.env ()) id
in
(Local, VarRef id)
| Local | Global | Discharge ->
let local = match locality with
| Local | Discharge -> true
| Global -> false
in
let kn =
declare_constant ?export_seff id ~local (DefinitionEntry const, k) in
let () = if should_suggest
then Proof_using.suggest_constant (Global.env ()) kn
in
(locality, ConstRef kn)
in
definition_message id;
Declare.declare_univ_binders r (UState.universe_binders uctx);
call_hook (fun exn -> exn) hook l r
with e when CErrors.noncritical e ->
let e = CErrors.push e in
iraise (fix_exn e)
let default_thm_id = Id.of_string "Unnamed_thm"
let fresh_name_for_anonymous_theorem () =
let avoid = Id.Set.of_list (Proof_global.get_all_proof_names ()) in
next_global_ident_away default_thm_id avoid
let check_name_freshness locality {CAst.loc;v=id} : unit =
(* We check existence here: it's a bit late at Qed time *)
if Nametab.exists_cci (Lib.make_path id) || is_section_variable id ||
locality == Global && Nametab.exists_cci (Lib.make_path_except_section id)
then
user_err ?loc (Id.print id ++ str " already exists.")
let save_remaining_recthms (locality,p,kind) norm univs body opaq i (id,(t_i,(_,imps))) =
let t_i = norm t_i in
match body with
| None ->
(match locality with
| Discharge ->
let impl = false in (* copy values from Vernacentries *)
let k = IsAssumption Conjectural in
let univs = match univs with
| Polymorphic_const_entry univs ->
(* What is going on here? *)
Univ.ContextSet.of_context univs
| Monomorphic_const_entry univs -> univs
in
let c = SectionLocalAssum ((t_i, univs),p,impl) in
let _ = declare_variable id (Lib.cwd(),c,k) in
(Discharge, VarRef id,imps)
| Local | Global ->
let k = IsAssumption Conjectural in
let local = match locality with
| Local -> true
| Global -> false
| Discharge -> assert false
in
let decl = (ParameterEntry (None,(t_i,univs),None), k) in
let kn = declare_constant id ~local decl in
(locality,ConstRef kn,imps))
| Some body ->
let body = norm body in
let k = Kindops.logical_kind_of_goal_kind kind in
let rec body_i t = match Constr.kind t with
| Fix ((nv,0),decls) -> mkFix ((nv,i),decls)
| CoFix (0,decls) -> mkCoFix (i,decls)
| LetIn(na,t1,ty,t2) -> mkLetIn (na,t1,ty, body_i t2)
| Lambda(na,ty,t) -> mkLambda(na,ty,body_i t)
| App (t, args) -> mkApp (body_i t, args)
| _ ->
let sigma, env = Pfedit.get_current_context () in
anomaly Pp.(str "Not a proof by induction: " ++ Printer.pr_constr_env env sigma body ++ str ".") in
let body_i = body_i body in
match locality with
| Discharge ->
let const = definition_entry ~types:t_i ~opaque:opaq ~univs body_i in
let c = SectionLocalDef const in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Discharge,VarRef id,imps)
| Local | Global ->
let local = match locality with
| Local -> true
| Global -> false
| Discharge -> assert false
in
let const =
Declare.definition_entry ~types:t_i ~univs ~opaque:opaq body_i
in
let kn = declare_constant id ~local (DefinitionEntry const, k) in
(locality,ConstRef kn,imps)
let save_hook = ref ignore
let set_save_hook f = save_hook := f
let save_named ?export_seff proof =
let id,const,uctx,do_guard,persistence,hook = proof in
save ?export_seff id const uctx do_guard persistence hook
let check_anonymity id save_ident =
if not (String.equal (atompart_of_id id) (Id.to_string (default_thm_id))) then
user_err Pp.(str "This command can only be used for unnamed theorem.")
let save_anonymous ?export_seff proof save_ident =
let id,const,uctx,do_guard,persistence,hook = proof in
check_anonymity id save_ident;
save ?export_seff save_ident const uctx do_guard persistence hook
(* Admitted *)
let warn_let_as_axiom =
CWarnings.create ~name:"let-as-axiom" ~category:"vernacular"
(fun id -> strbrk "Let definition" ++ spc () ++ Id.print id ++
spc () ++ strbrk "declared as an axiom.")
let admit (id,k,e) pl hook () =
let kn = declare_constant id (ParameterEntry e, IsAssumption Conjectural) in
let () = match k with
| Global, _, _ -> ()
| Local, _, _ | Discharge, _, _ -> warn_let_as_axiom id
in
let () = assumption_message id in
Declare.declare_univ_binders (ConstRef kn) pl;
call_hook (fun exn -> exn) hook Global (ConstRef kn)
(* Starting a goal *)
let start_hook = ref ignore
let set_start_hook = (:=) start_hook
let get_proof proof do_guard hook opacity =
let (id,(const,univs,persistence)) =
Pfedit.cook_this_proof proof
in
id,{const with const_entry_opaque = opacity},univs,do_guard,persistence,hook
let universe_proof_terminator compute_guard hook =
let open Proof_global in
make_terminator begin function
| Admitted (id,k,pe,ctx) ->
admit (id,k,pe) (UState.universe_binders ctx) (hook (Some ctx)) ();
Feedback.feedback Feedback.AddedAxiom
| Proved (opaque,idopt,proof) ->
let is_opaque, export_seff = match opaque with
| Vernacexpr.Transparent -> false, true
| Vernacexpr.Opaque -> true, false
in
let proof = get_proof proof compute_guard
(hook (Some (proof.Proof_global.universes))) is_opaque in
begin match idopt with
| None -> save_named ~export_seff proof
| Some { CAst.v = id } -> save_anonymous ~export_seff proof id
end
end
let standard_proof_terminator compute_guard hook =
universe_proof_terminator compute_guard (fun _ -> hook)
let start_proof id ?pl kind sigma ?terminator ?sign c ?init_tac ?(compute_guard=[]) hook =
let terminator = match terminator with
| None -> standard_proof_terminator compute_guard hook
| Some terminator -> terminator compute_guard hook
in
let sign =
match sign with
| Some sign -> sign
| None -> initialize_named_context_for_proof ()
in
!start_hook c;
Pfedit.start_proof id ?pl kind sigma sign c ?init_tac terminator
let start_proof_univs id ?pl kind sigma ?terminator ?sign c ?init_tac ?(compute_guard=[]) hook =
let terminator = match terminator with
| None -> universe_proof_terminator compute_guard hook
| Some terminator -> terminator compute_guard hook
in
let sign =
match sign with
| Some sign -> sign
| None -> initialize_named_context_for_proof ()
in
!start_hook c;
Pfedit.start_proof id ?pl kind sigma sign c ?init_tac terminator
let rec_tac_initializer finite guard thms snl =
if finite then
match List.map (fun (id,(t,_)) -> (id,t)) thms with
| (id,_)::l -> Tactics.mutual_cofix id l 0
| _ -> assert false
else
(* nl is dummy: it will be recomputed at Qed-time *)
let nl = match snl with
| None -> List.map succ (List.map List.last guard)
| Some nl -> nl
in match List.map2 (fun (id,(t,_)) n -> (id,n, t)) thms nl with
| (id,n,_)::l -> Tactics.mutual_fix id n l 0
| _ -> assert false
let start_proof_with_initialization kind sigma decl recguard thms snl hook =
let intro_tac (_, (_, (ids, _))) =
Tacticals.New.tclMAP (function
| Name id -> Tactics.intro_mustbe_force id
| Anonymous -> Tactics.intro) (List.rev ids) in
let init_tac,guard = match recguard with
| Some (finite,guard,init_tac) ->
let rec_tac = rec_tac_initializer finite guard thms snl in
Some (match init_tac with
| None ->
if Flags.is_auto_intros () then
Tacticals.New.tclTHENS rec_tac (List.map intro_tac thms)
else
rec_tac
| Some tacl ->
Tacticals.New.tclTHENS rec_tac
(if Flags.is_auto_intros () then
List.map2 (fun tac thm -> Tacticals.New.tclTHEN tac (intro_tac thm)) tacl thms
else
tacl)),guard
| None ->
let () = match thms with [_] -> () | _ -> assert false in
(if Flags.is_auto_intros () then Some (intro_tac (List.hd thms)) else None), [] in
match thms with
| [] -> anomaly (Pp.str "No proof to start.")
| (id,(t,(_,imps)))::other_thms ->
let hook ctx strength ref =
let ctx = match ctx with
| None -> UState.empty
| Some ctx -> ctx
in
let other_thms_data =
if List.is_empty other_thms then [] else
(* there are several theorems defined mutually *)
let body,opaq = retrieve_first_recthm ctx ref in
let norm c = EConstr.to_constr (Evd.from_ctx ctx) c in
let body = Option.map EConstr.of_constr body in
let uctx = UState.check_univ_decl ~poly:(pi2 kind) ctx decl in
List.map_i (save_remaining_recthms kind norm uctx body opaq) 1 other_thms in
let thms_data = (strength,ref,imps)::other_thms_data in
List.iter (fun (strength,ref,imps) ->
maybe_declare_manual_implicits false ref imps;
call_hook (fun exn -> exn) hook strength ref) thms_data in
start_proof_univs id ~pl:decl kind sigma t ?init_tac (fun ctx -> mk_hook (hook ctx)) ~compute_guard:guard
let start_proof_com ?inference_hook kind thms hook =
let env0 = Global.env () in
let decl = fst (List.hd thms) in
let evd, decl = Univdecls.interp_univ_decl_opt env0 (snd decl) in
let evd, thms = List.fold_left_map (fun evd ((id, _), (bl, t)) ->
let evd, (impls, ((env, ctx), imps)) = interp_context_evars env0 evd bl in
let evd, (t', imps') = interp_type_evars_impls ~impls env evd t in
let flags = all_and_fail_flags in
let flags = { flags with use_hook = inference_hook } in
let evd = solve_remaining_evars flags env evd Evd.empty in
let ids = List.map RelDecl.get_name ctx in
check_name_freshness (pi1 kind) id;
(* XXX: The nf_evar is critical !! *)
evd, (id.CAst.v,
(Evarutil.nf_evar evd (EConstr.it_mkProd_or_LetIn t' ctx),
(ids, imps @ lift_implicits (Context.Rel.nhyps ctx) imps'))))
evd thms in
let recguard,thms,snl = look_for_possibly_mutual_statements evd thms in
let evd, _nf = Evarutil.nf_evars_and_universes evd in
(* XXX: This nf_evar is critical too!! We are normalizing twice if
you look at the previous lines... *)
let thms = List.map (fun (n, (t, info)) -> (n, (nf_evar evd t, info))) thms in
let () =
let open Misctypes in
if not (decl.univdecl_extensible_instance && decl.univdecl_extensible_constraints) then
ignore (Evd.check_univ_decl ~poly:(pi2 kind) evd decl)
in
let evd =
if pi2 kind then evd
else (* We fix the variables to ensure they won't be lowered to Set *)
Evd.fix_undefined_variables evd
in
start_proof_with_initialization kind evd decl recguard thms snl hook
(* Saving a proof *)
let keep_admitted_vars = ref true
let _ =
let open Goptions in
declare_bool_option
{ optdepr = false;
optname = "keep section variables in admitted proofs";
optkey = ["Keep"; "Admitted"; "Variables"];
optread = (fun () -> !keep_admitted_vars);
optwrite = (fun b -> keep_admitted_vars := b) }
let save_proof ?proof = function
| Vernacexpr.Admitted ->
let pe =
let open Proof_global in
match proof with
| Some ({ id; entries; persistence = k; universes }, _) ->
if List.length entries <> 1 then
user_err Pp.(str "Admitted does not support multiple statements");
let { const_entry_secctx; const_entry_type } = List.hd entries in
if const_entry_type = None then
user_err Pp.(str "Admitted requires an explicit statement");
let typ = Option.get const_entry_type in
let ctx = UState.const_univ_entry ~poly:(pi2 k) universes in
let sec_vars = if !keep_admitted_vars then const_entry_secctx else None in
Admitted(id, k, (sec_vars, (typ, ctx), None), universes)
| None ->
let pftree = Proof_global.give_me_the_proof () in
let id, k, typ = Pfedit.current_proof_statement () in
let typ = EConstr.Unsafe.to_constr typ in
let universes = Proof.initial_euctx pftree in
(* This will warn if the proof is complete *)
let pproofs, _univs =
Proof_global.return_proof ~allow_partial:true () in
let sec_vars =
if not !keep_admitted_vars then None
else match Proof_global.get_used_variables(), pproofs with
| Some _ as x, _ -> x
| None, (pproof, _) :: _ ->
let env = Global.env () in
let ids_typ = Environ.global_vars_set env typ in
let ids_def = Environ.global_vars_set env pproof in
Some (Environ.keep_hyps env (Id.Set.union ids_typ ids_def))
| _ -> None in
let decl = Proof_global.get_universe_decl () in
let poly = pi2 k in
let ctx = UState.check_univ_decl ~poly universes decl in
Admitted(id,k,(sec_vars, (typ, ctx), None), universes)
in
Proof_global.apply_terminator (Proof_global.get_terminator ()) pe
| Vernacexpr.Proved (is_opaque,idopt) ->
let (proof_obj,terminator) =
match proof with
| None ->
Proof_global.close_proof ~keep_body_ucst_separate:false (fun x -> x)
| Some proof -> proof
in
(* if the proof is given explicitly, nothing has to be deleted *)
if Option.is_empty proof then Proof_global.discard_current ();
Proof_global.(apply_terminator terminator (Proved (is_opaque,idopt,proof_obj)))
(* Miscellaneous *)
let get_current_context () = Pfedit.get_current_context ()
|