1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Names
open Nameops
open Namegen
open Term
open Termops
open Indtypes
open Environ
open Pretype_errors
open Type_errors
open Typeclasses_errors
open Indrec
open Cases
open Logic
open Printer
open Evd
open Context.Rel.Declaration
module RelDecl = Context.Rel.Declaration
(* This simplifies the typing context of Cases clauses *)
(* hope it does not disturb other typing contexts *)
let contract env sigma lc =
let open EConstr in
let l = ref [] in
let contract_context decl env =
match decl with
| LocalDef (_,c',_) when isRel sigma c' ->
l := (Vars.substl !l c') :: !l;
env
| _ ->
let t = Vars.substl !l (RelDecl.get_type decl) in
let decl = decl |> RelDecl.map_name (named_hd env sigma t) |> RelDecl.map_value (Vars.substl !l) |> RelDecl.set_type t in
l := (mkRel 1) :: List.map (Vars.lift 1) !l;
push_rel decl env
in
let env = process_rel_context contract_context env in
(env, List.map (Vars.substl !l) lc)
let contract2 env sigma a b = match contract env sigma [a;b] with
| env, [a;b] -> env,a,b | _ -> assert false
let contract3 env sigma a b c = match contract env sigma [a;b;c] with
| env, [a;b;c] -> env,a,b,c | _ -> assert false
let contract4 env sigma a b c d = match contract env sigma [a;b;c;d] with
| env, [a;b;c;d] -> (env,a,b,c),d | _ -> assert false
let contract1_vect env sigma a v =
match contract env sigma (a :: Array.to_list v) with
| env, a::l -> env,a,Array.of_list l
| _ -> assert false
let rec contract3' env sigma a b c = function
| OccurCheck (evk,d) ->
let x,d = contract4 env sigma a b c d in x,OccurCheck(evk, d)
| NotClean ((evk,args),env',d) ->
let env',d,args = contract1_vect env' sigma d args in
contract3 env sigma a b c,NotClean((evk,args),env',d)
| ConversionFailed (env',t1,t2) ->
let (env',t1,t2) = contract2 env' sigma t1 t2 in
contract3 env sigma a b c, ConversionFailed (env',t1,t2)
| NotSameArgSize | NotSameHead | NoCanonicalStructure
| MetaOccurInBody _ | InstanceNotSameType _ | ProblemBeyondCapabilities
| UnifUnivInconsistency _ as x -> contract3 env sigma a b c, x
| CannotSolveConstraint ((pb,env',t,u),x) ->
let t = EConstr.of_constr t in
let u = EConstr.of_constr u in
let env',t,u = contract2 env' sigma t u in
let t = EConstr.Unsafe.to_constr t in
let u = EConstr.Unsafe.to_constr u in
let y,x = contract3' env sigma a b c x in
y,CannotSolveConstraint ((pb,env',t,u),x)
(** Ad-hoc reductions *)
let j_nf_betaiotaevar sigma j =
{ uj_val = Evarutil.nf_evar sigma j.uj_val;
uj_type = Reductionops.nf_betaiota sigma j.uj_type }
let jv_nf_betaiotaevar sigma jl =
Array.map (fun j -> j_nf_betaiotaevar sigma j) jl
(** Printers *)
let pr_lconstr c = quote (pr_lconstr c)
let pr_lconstr_env e s c = quote (pr_lconstr_env e s c)
let pr_leconstr c = quote (pr_leconstr c)
let pr_leconstr_env e s c = quote (pr_leconstr_env e s c)
let pr_ljudge_env e s c = let v,t = pr_ljudge_env e s c in (quote v,quote t)
(** A canonisation procedure for constr such that comparing there
externalisation catches more equalities *)
let canonize_constr sigma c =
(* replaces all the names in binders by [dn] ("default name"),
ensures that [alpha]-equivalent terms will have the same
externalisation. *)
let open EConstr in
let dn = Name.Anonymous in
let rec canonize_binders c =
match EConstr.kind sigma c with
| Prod (_,t,b) -> mkProd(dn,t,b)
| Lambda (_,t,b) -> mkLambda(dn,t,b)
| LetIn (_,u,t,b) -> mkLetIn(dn,u,t,b)
| _ -> EConstr.map sigma canonize_binders c
in
canonize_binders c
(** Tries to realize when the two terms, albeit different are printed the same. *)
let display_eq ~flags env sigma t1 t2 =
(* terms are canonized, then their externalisation is compared syntactically *)
let open Constrextern in
let t1 = canonize_constr sigma t1 in
let t2 = canonize_constr sigma t2 in
let ct1 = Flags.with_options flags (fun () -> extern_constr false env sigma t1) () in
let ct2 = Flags.with_options flags (fun () -> extern_constr false env sigma t2) () in
Constrexpr_ops.constr_expr_eq ct1 ct2
(** This function adds some explicit printing flags if the two arguments are
printed alike. *)
let rec pr_explicit_aux env sigma t1 t2 = function
| [] ->
(** no specified flags: default. *)
(quote (Printer.pr_leconstr_env env sigma t1), quote (Printer.pr_leconstr_env env sigma t2))
| flags :: rem ->
let equal = display_eq ~flags env sigma t1 t2 in
if equal then
(** The two terms are the same from the user point of view *)
pr_explicit_aux env sigma t1 t2 rem
else
let open Constrextern in
let ct1 = Flags.with_options flags (fun () -> extern_constr false env sigma t1) ()
in
let ct2 = Flags.with_options flags (fun () -> extern_constr false env sigma t2) ()
in
quote (Ppconstr.pr_lconstr_expr ct1), quote (Ppconstr.pr_lconstr_expr ct2)
let explicit_flags =
let open Constrextern in
[ []; (** First, try with the current flags *)
[print_implicits]; (** Then with implicit *)
[print_universes]; (** Then with universes *)
[print_universes; print_implicits]; (** With universes AND implicits *)
[print_implicits; print_coercions; print_no_symbol]; (** Then more! *)
[print_universes; print_implicits; print_coercions; print_no_symbol] (** and more! *) ]
let pr_explicit env sigma t1 t2 =
pr_explicit_aux env sigma t1 t2 explicit_flags
let pr_db env i =
try
match env |> lookup_rel i |> get_name with
| Name id -> pr_id id
| Anonymous -> str "<>"
with Not_found -> str "UNBOUND_REL_" ++ int i
let explain_unbound_rel env sigma n =
let pe = pr_ne_context_of (str "In environment") env sigma in
str "Unbound reference: " ++ pe ++
str "The reference " ++ int n ++ str " is free."
let explain_unbound_var env v =
let var = pr_id v in
str "No such section variable or assumption: " ++ var ++ str "."
let explain_not_type env sigma j =
let j = Evarutil.j_nf_evar sigma j in
let pe = pr_ne_context_of (str "In environment") env sigma in
let pc,pt = pr_ljudge_env env sigma j in
pe ++ str "The term" ++ brk(1,1) ++ pc ++ spc () ++
str "has type" ++ spc () ++ pt ++ spc () ++
str "which should be Set, Prop or Type."
let explain_bad_assumption env sigma j =
let pe = pr_ne_context_of (str "In environment") env sigma in
let pc,pt = pr_ljudge_env env sigma j in
pe ++ str "Cannot declare a variable or hypothesis over the term" ++
brk(1,1) ++ pc ++ spc () ++ str "of type" ++ spc () ++ pt ++ spc () ++
str "because this term is not a type."
let explain_reference_variables sigma id c =
(* c is intended to be a global reference *)
let pc = pr_global (fst (Termops.global_of_constr sigma c)) in
pc ++ strbrk " depends on the variable " ++ pr_id id ++
strbrk " which is not declared in the context."
let rec pr_disjunction pr = function
| [a] -> pr a
| [a;b] -> pr a ++ str " or" ++ spc () ++ pr b
| a::l -> pr a ++ str "," ++ spc () ++ pr_disjunction pr l
| [] -> assert false
let pr_puniverses f env (c,u) =
f env c ++
(if Flags.is_universe_polymorphism () && not (Univ.Instance.is_empty u) then
str"(*" ++ Univ.Instance.pr Universes.pr_with_global_universes u ++ str"*)"
else mt())
let explain_elim_arity env sigma ind sorts c pj okinds =
let open EConstr in
let env = make_all_name_different env sigma in
let pi = pr_inductive env (fst ind) in
let pc = pr_leconstr_env env sigma c in
let msg = match okinds with
| Some(kp,ki,explanation) ->
let pki = pr_sort_family ki in
let pkp = pr_sort_family kp in
let explanation = match explanation with
| NonInformativeToInformative ->
"proofs can be eliminated only to build proofs"
| StrongEliminationOnNonSmallType ->
"strong elimination on non-small inductive types leads to paradoxes"
| WrongArity ->
"wrong arity" in
let ppar = pr_disjunction (fun s -> quote (pr_sort_family s)) sorts in
let ppt = pr_leconstr_env env sigma (snd (decompose_prod_assum sigma pj.uj_type)) in
hov 0
(str "the return type has sort" ++ spc () ++ ppt ++ spc () ++
str "while it" ++ spc () ++ str "should be " ++ ppar ++ str ".") ++
fnl () ++
hov 0
(str "Elimination of an inductive object of sort " ++
pki ++ brk(1,0) ++
str "is not allowed on a predicate in sort " ++ pkp ++ fnl () ++
str "because" ++ spc () ++ str explanation ++ str ".")
| None ->
str "ill-formed elimination predicate."
in
hov 0 (
str "Incorrect elimination of" ++ spc () ++ pc ++ spc () ++
str "in the inductive type" ++ spc () ++ quote pi ++ str ":") ++
fnl () ++ msg
let explain_case_not_inductive env sigma cj =
let cj = Evarutil.j_nf_evar sigma cj in
let env = make_all_name_different env sigma in
let pc = pr_leconstr_env env sigma cj.uj_val in
let pct = pr_leconstr_env env sigma cj.uj_type in
match EConstr.kind sigma cj.uj_type with
| Evar _ ->
str "Cannot infer a type for this expression."
| _ ->
str "The term" ++ brk(1,1) ++ pc ++ spc () ++
str "has type" ++ brk(1,1) ++ pct ++ spc () ++
str "which is not a (co-)inductive type."
let explain_number_branches env sigma cj expn =
let cj = Evarutil.j_nf_evar sigma cj in
let env = make_all_name_different env sigma in
let pc = pr_leconstr_env env sigma cj.uj_val in
let pct = pr_leconstr_env env sigma cj.uj_type in
str "Matching on term" ++ brk(1,1) ++ pc ++ spc () ++
str "of type" ++ brk(1,1) ++ pct ++ spc () ++
str "expects " ++ int expn ++ str " branches."
let explain_ill_formed_branch env sigma c ci actty expty =
let simp t = Reductionops.nf_betaiota sigma (Evarutil.nf_evar sigma t) in
let env = make_all_name_different env sigma in
let pc = pr_leconstr_env env sigma c in
let pa, pe = pr_explicit env sigma (simp actty) (simp expty) in
strbrk "In pattern-matching on term" ++ brk(1,1) ++ pc ++
spc () ++ strbrk "the branch for constructor" ++ spc () ++
quote (pr_puniverses pr_constructor env ci) ++
spc () ++ str "has type" ++ brk(1,1) ++ pa ++ spc () ++
str "which should be" ++ brk(1,1) ++ pe ++ str "."
let explain_generalization env sigma (name,var) j =
let pe = pr_ne_context_of (str "In environment") env sigma in
let pv = pr_letype_env env sigma var in
let (pc,pt) = pr_ljudge_env (push_rel_assum (name,var) env) sigma j in
pe ++ str "Cannot generalize" ++ brk(1,1) ++ pv ++ spc () ++
str "over" ++ brk(1,1) ++ pc ++ str "," ++ spc () ++
str "it has type" ++ spc () ++ pt ++
spc () ++ str "which should be Set, Prop or Type."
let explain_unification_error env sigma p1 p2 = function
| None -> mt()
| Some e ->
let rec aux p1 p2 = function
| OccurCheck (evk,rhs) ->
[str "cannot define " ++ quote (pr_existential_key sigma evk) ++
strbrk " with term " ++ pr_leconstr_env env sigma rhs ++
strbrk " that would depend on itself"]
| NotClean ((evk,args),env,c) ->
[str "cannot instantiate " ++ quote (pr_existential_key sigma evk)
++ strbrk " because " ++ pr_leconstr_env env sigma c ++
strbrk " is not in its scope" ++
(if Array.is_empty args then mt() else
strbrk ": available arguments are " ++
pr_sequence (pr_leconstr_env env sigma) (List.rev (Array.to_list args)))]
| NotSameArgSize | NotSameHead | NoCanonicalStructure ->
(* Error speaks from itself *) []
| ConversionFailed (env,t1,t2) ->
if EConstr.eq_constr sigma t1 p1 && EConstr.eq_constr sigma t2 p2 then [] else
let env = make_all_name_different env sigma in
let t1 = Evarutil.nf_evar sigma t1 in
let t2 = Evarutil.nf_evar sigma t2 in
if not (EConstr.eq_constr sigma t1 p1) || not (EConstr.eq_constr sigma t2 p2) then
let t1, t2 = pr_explicit env sigma t1 t2 in
[str "cannot unify " ++ t1 ++ strbrk " and " ++ t2]
else []
| MetaOccurInBody evk ->
[str "instance for " ++ quote (pr_existential_key sigma evk) ++
strbrk " refers to a metavariable - please report your example" ++
strbrk "at " ++ str Coq_config.wwwbugtracker ++ str "."]
| InstanceNotSameType (evk,env,t,u) ->
let t, u = pr_explicit env sigma t u in
[str "unable to find a well-typed instantiation for " ++
quote (pr_existential_key sigma evk) ++
strbrk ": cannot ensure that " ++
t ++ strbrk " is a subtype of " ++ u]
| UnifUnivInconsistency p ->
if !Constrextern.print_universes then
[str "universe inconsistency: " ++
Univ.explain_universe_inconsistency Universes.pr_with_global_universes p]
else
[str "universe inconsistency"]
| CannotSolveConstraint ((pb,env,t,u),e) ->
let t = EConstr.of_constr t in
let u = EConstr.of_constr u in
let t = Evarutil.nf_evar sigma t in
let u = Evarutil.nf_evar sigma u in
let env = make_all_name_different env sigma in
(strbrk "cannot satisfy constraint " ++ pr_leconstr_env env sigma t ++
str " == " ++ pr_leconstr_env env sigma u)
:: aux t u e
| ProblemBeyondCapabilities ->
[]
in
match aux p1 p2 e with
| [] -> mt ()
| l -> spc () ++ str "(" ++
prlist_with_sep pr_semicolon (fun x -> x) l ++ str ")"
let explain_actual_type env sigma j t reason =
let env = make_all_name_different env sigma in
let j = j_nf_betaiotaevar sigma j in
let t = Reductionops.nf_betaiota sigma t in
(** Actually print *)
let pe = pr_ne_context_of (str "In environment") env sigma in
let pc = pr_leconstr_env env sigma (Environ.j_val j) in
let (pt, pct) = pr_explicit env sigma t (Environ.j_type j) in
let ppreason = explain_unification_error env sigma j.uj_type t reason in
pe ++
hov 0 (
str "The term" ++ brk(1,1) ++ pc ++ spc () ++
str "has type" ++ brk(1,1) ++ pct ++ spc () ++
str "while it is expected to have type" ++ brk(1,1) ++ pt ++
ppreason ++ str ".")
let explain_cant_apply_bad_type env sigma (n,exptyp,actualtyp) rator randl =
let randl = jv_nf_betaiotaevar sigma randl in
let exptyp = Evarutil.nf_evar sigma exptyp in
let actualtyp = Reductionops.nf_betaiota sigma actualtyp in
let rator = Evarutil.j_nf_evar sigma rator in
let env = make_all_name_different env sigma in
let actualtyp, exptyp = pr_explicit env sigma actualtyp exptyp in
let nargs = Array.length randl in
(* let pe = pr_ne_context_of (str "in environment") env sigma in*)
let pr,prt = pr_ljudge_env env sigma rator in
let term_string1 = str (String.plural nargs "term") in
let term_string2 =
if nargs>1 then str "The " ++ pr_nth n ++ str " term" else str "This term"
in
let appl = prvect_with_sep fnl
(fun c ->
let pc,pct = pr_ljudge_env env sigma c in
hov 2 (pc ++ spc () ++ str ": " ++ pct)) randl
in
str "Illegal application: " ++ (* pe ++ *) fnl () ++
str "The term" ++ brk(1,1) ++ pr ++ spc () ++
str "of type" ++ brk(1,1) ++ prt ++ spc () ++
str "cannot be applied to the " ++ term_string1 ++ fnl () ++
str " " ++ v 0 appl ++ fnl () ++ term_string2 ++ str " has type" ++
brk(1,1) ++ actualtyp ++ spc () ++
str "which should be coercible to" ++ brk(1,1) ++
exptyp ++ str "."
let explain_cant_apply_not_functional env sigma rator randl =
let randl = Evarutil.jv_nf_evar sigma randl in
let rator = Evarutil.j_nf_evar sigma rator in
let env = make_all_name_different env sigma in
let nargs = Array.length randl in
(* let pe = pr_ne_context_of (str "in environment") env sigma in*)
let pr = pr_leconstr_env env sigma rator.uj_val in
let prt = pr_leconstr_env env sigma rator.uj_type in
let appl = prvect_with_sep fnl
(fun c ->
let pc = pr_leconstr_env env sigma c.uj_val in
let pct = pr_leconstr_env env sigma c.uj_type in
hov 2 (pc ++ spc () ++ str ": " ++ pct)) randl
in
str "Illegal application (Non-functional construction): " ++
(* pe ++ *) fnl () ++
str "The expression" ++ brk(1,1) ++ pr ++ spc () ++
str "of type" ++ brk(1,1) ++ prt ++ spc () ++
str "cannot be applied to the " ++ str (String.plural nargs "term") ++
fnl () ++ str " " ++ v 0 appl
let explain_unexpected_type env sigma actual_type expected_type =
let actual_type = Evarutil.nf_evar sigma actual_type in
let expected_type = Evarutil.nf_evar sigma expected_type in
let pract, prexp = pr_explicit env sigma actual_type expected_type in
str "Found type" ++ spc () ++ pract ++ spc () ++
str "where" ++ spc () ++ prexp ++ str " was expected."
let explain_not_product env sigma c =
let c = EConstr.to_constr sigma c in
let pr = pr_lconstr_env env sigma c in
str "The type of this term is a product" ++ spc () ++
str "while it is expected to be" ++
(if is_Type c then str " a sort" else (brk(1,1) ++ pr)) ++ str "."
(* TODO: use the names *)
(* (co)fixpoints *)
let explain_ill_formed_rec_body env sigma err names i fixenv vdefj =
let pr_lconstr_env env sigma c = pr_leconstr_env env sigma c in
let prt_name i =
match names.(i) with
Name id -> str "Recursive definition of " ++ pr_id id
| Anonymous -> str "The " ++ pr_nth i ++ str " definition" in
let st = match err with
(* Fixpoint guard errors *)
| NotEnoughAbstractionInFixBody ->
str "Not enough abstractions in the definition"
| RecursionNotOnInductiveType c ->
str "Recursive definition on" ++ spc () ++ pr_lconstr_env env sigma c ++
spc () ++ str "which should be an inductive type"
| RecursionOnIllegalTerm(j,(arg_env, arg),le,lt) ->
let arg_env = make_all_name_different arg_env sigma in
let called =
match names.(j) with
Name id -> pr_id id
| Anonymous -> str "the " ++ pr_nth i ++ str " definition" in
let pr_db x = quote (pr_db env x) in
let vars =
match (lt,le) with
([],[]) -> assert false
| ([],[x]) -> str "a subterm of " ++ pr_db x
| ([],_) -> str "a subterm of the following variables: " ++
pr_sequence pr_db le
| ([x],_) -> pr_db x
| _ ->
str "one of the following variables: " ++
pr_sequence pr_db lt in
str "Recursive call to " ++ called ++ spc () ++
strbrk "has principal argument equal to" ++ spc () ++
pr_lconstr_env arg_env sigma arg ++ strbrk " instead of " ++ vars
| NotEnoughArgumentsForFixCall j ->
let called =
match names.(j) with
Name id -> pr_id id
| Anonymous -> str "the " ++ pr_nth i ++ str " definition" in
str "Recursive call to " ++ called ++ str " has not enough arguments"
(* CoFixpoint guard errors *)
| CodomainNotInductiveType c ->
str "The codomain is" ++ spc () ++ pr_lconstr_env env sigma c ++ spc () ++
str "which should be a coinductive type"
| NestedRecursiveOccurrences ->
str "Nested recursive occurrences"
| UnguardedRecursiveCall c ->
str "Unguarded recursive call in" ++ spc () ++ pr_lconstr_env env sigma c
| RecCallInTypeOfAbstraction c ->
str "Recursive call forbidden in the domain of an abstraction:" ++
spc () ++ pr_lconstr_env env sigma c
| RecCallInNonRecArgOfConstructor c ->
str "Recursive call on a non-recursive argument of constructor" ++
spc () ++ pr_lconstr_env env sigma c
| RecCallInTypeOfDef c ->
str "Recursive call forbidden in the type of a recursive definition" ++
spc () ++ pr_lconstr_env env sigma c
| RecCallInCaseFun c ->
str "Invalid recursive call in a branch of" ++
spc () ++ pr_lconstr_env env sigma c
| RecCallInCaseArg c ->
str "Invalid recursive call in the argument of \"match\" in" ++ spc () ++
pr_lconstr_env env sigma c
| RecCallInCasePred c ->
str "Invalid recursive call in the \"return\" clause of \"match\" in" ++
spc () ++ pr_lconstr_env env sigma c
| NotGuardedForm c ->
str "Sub-expression " ++ pr_lconstr_env env sigma c ++
strbrk " not in guarded form (should be a constructor," ++
strbrk " an abstraction, a match, a cofix or a recursive call)"
| ReturnPredicateNotCoInductive c ->
str "The return clause of the following pattern matching should be" ++
strbrk " a coinductive type:" ++
spc () ++ pr_lconstr_env env sigma c
in
prt_name i ++ str " is ill-formed." ++ fnl () ++
pr_ne_context_of (str "In environment") env sigma ++
st ++ str "." ++ fnl () ++
(try (* May fail with unresolved globals. *)
let fixenv = make_all_name_different fixenv sigma in
let pvd = pr_lconstr_env fixenv sigma vdefj.(i).uj_val in
str"Recursive definition is:" ++ spc () ++ pvd ++ str "."
with e when CErrors.noncritical e -> mt ())
let explain_ill_typed_rec_body env sigma i names vdefj vargs =
let vdefj = Evarutil.jv_nf_evar sigma vdefj in
let vargs = Array.map (Evarutil.nf_evar sigma) vargs in
let env = make_all_name_different env sigma in
let pvd = pr_leconstr_env env sigma vdefj.(i).uj_val in
let pvdt, pv = pr_explicit env sigma vdefj.(i).uj_type vargs.(i) in
str "The " ++
(match vdefj with [|_|] -> mt () | _ -> pr_nth (i+1) ++ spc ()) ++
str "recursive definition" ++ spc () ++ pvd ++ spc () ++
str "has type" ++ spc () ++ pvdt ++ spc () ++
str "while it should be" ++ spc () ++ pv ++ str "."
let explain_cant_find_case_type env sigma c =
let env = make_all_name_different env sigma in
let pe = pr_leconstr_env env sigma c in
str "Cannot infer the return type of pattern-matching on" ++ ws 1 ++
pe ++ str "."
let explain_occur_check env sigma ev rhs =
let env = make_all_name_different env sigma in
let pt = pr_leconstr_env env sigma rhs in
str "Cannot define " ++ pr_existential_key sigma ev ++ str " with term" ++
brk(1,1) ++ pt ++ spc () ++ str "that would depend on itself."
let pr_trailing_ne_context_of env sigma =
if List.is_empty (Environ.rel_context env) &&
List.is_empty (Environ.named_context env)
then str "."
else (str " in environment:"++ pr_context_unlimited env sigma)
let rec explain_evar_kind env sigma evk ty = function
| Evar_kinds.NamedHole id ->
strbrk "the existential variable named " ++ pr_id id
| Evar_kinds.QuestionMark _ ->
strbrk "this placeholder of type " ++ ty
| Evar_kinds.CasesType false ->
strbrk "the type of this pattern-matching problem"
| Evar_kinds.CasesType true ->
strbrk "a subterm of type " ++ ty ++
strbrk " in the type of this pattern-matching problem"
| Evar_kinds.BinderType (Name id) ->
strbrk "the type of " ++ Nameops.pr_id id
| Evar_kinds.BinderType Anonymous ->
strbrk "the type of this anonymous binder"
| Evar_kinds.ImplicitArg (c,(n,ido),b) ->
let id = Option.get ido in
strbrk "the implicit parameter " ++ pr_id id ++ spc () ++ str "of" ++
spc () ++ Nametab.pr_global_env Id.Set.empty c ++
strbrk " whose type is " ++ ty
| Evar_kinds.InternalHole -> strbrk "an internal placeholder of type " ++ ty
| Evar_kinds.TomatchTypeParameter (tyi,n) ->
strbrk "the " ++ pr_nth n ++
strbrk " argument of the inductive type (" ++ pr_inductive env tyi ++
strbrk ") of this term"
| Evar_kinds.GoalEvar ->
strbrk "an existential variable of type " ++ ty
| Evar_kinds.ImpossibleCase ->
strbrk "the type of an impossible pattern-matching clause"
| Evar_kinds.MatchingVar _ ->
assert false
| Evar_kinds.VarInstance id ->
strbrk "an instance of type " ++ ty ++
str " for the variable " ++ pr_id id
| Evar_kinds.SubEvar evk' ->
let evi = Evd.find sigma evk' in
let pc = match evi.evar_body with
| Evar_defined c -> pr_leconstr_env env sigma (Evarutil.nf_evar sigma (EConstr.of_constr c))
| Evar_empty -> assert false in
let ty' = Evarutil.nf_evar sigma (EConstr.of_constr evi.evar_concl) in
pr_existential_key sigma evk ++ str " of type " ++ ty ++
str " in the partial instance " ++ pc ++
str " found for " ++ explain_evar_kind env sigma evk'
(pr_leconstr_env env sigma ty') (snd evi.evar_source)
let explain_typeclass_resolution env sigma evi k =
match Typeclasses.class_of_constr sigma (EConstr.of_constr evi.evar_concl) with
| Some _ ->
let env = Evd.evar_filtered_env evi in
fnl () ++ str "Could not find an instance for " ++
pr_lconstr_env env sigma evi.evar_concl ++
pr_trailing_ne_context_of env sigma
| _ -> mt()
let explain_placeholder_kind env sigma c e =
match e with
| Some (SeveralInstancesFound n) ->
strbrk " (several distinct possible type class instances found)"
| None ->
match Typeclasses.class_of_constr sigma (EConstr.of_constr c) with
| Some _ -> strbrk " (no type class instance found)"
| _ -> mt ()
let explain_unsolvable_implicit env sigma evk explain =
let evi = Evarutil.nf_evar_info sigma (Evd.find_undefined sigma evk) in
let env = Evd.evar_filtered_env evi in
let type_of_hole = pr_lconstr_env env sigma evi.evar_concl in
let pe = pr_trailing_ne_context_of env sigma in
strbrk "Cannot infer " ++
explain_evar_kind env sigma evk type_of_hole (snd evi.evar_source) ++
explain_placeholder_kind env sigma evi.evar_concl explain ++ pe
let explain_var_not_found env id =
str "The variable" ++ spc () ++ pr_id id ++
spc () ++ str "was not found" ++
spc () ++ str "in the current" ++ spc () ++ str "environment" ++ str "."
let explain_wrong_case_info env (ind,u) ci =
let pi = pr_inductive (Global.env()) ind in
if eq_ind ci.ci_ind ind then
str "Pattern-matching expression on an object of inductive type" ++
spc () ++ pi ++ spc () ++ str "has invalid information."
else
let pc = pr_inductive (Global.env()) ci.ci_ind in
str "A term of inductive type" ++ spc () ++ pi ++ spc () ++
str "was given to a pattern-matching expression on the inductive type" ++
spc () ++ pc ++ str "."
let explain_cannot_unify env sigma m n e =
let env = make_all_name_different env sigma in
let m = Evarutil.nf_evar sigma m in
let n = Evarutil.nf_evar sigma n in
let pm, pn = pr_explicit env sigma m n in
let ppreason = explain_unification_error env sigma m n e in
let pe = pr_ne_context_of (str "In environment") env sigma in
pe ++ str "Unable to unify" ++ brk(1,1) ++ pm ++ spc () ++
str "with" ++ brk(1,1) ++ pn ++ ppreason ++ str "."
let explain_cannot_unify_local env sigma m n subn =
let pm = pr_leconstr_env env sigma m in
let pn = pr_leconstr_env env sigma n in
let psubn = pr_leconstr_env env sigma subn in
str "Unable to unify" ++ brk(1,1) ++ pm ++ spc () ++
str "with" ++ brk(1,1) ++ pn ++ spc () ++ str "as" ++ brk(1,1) ++
psubn ++ str " contains local variables."
let explain_refiner_cannot_generalize env sigma ty =
str "Cannot find a well-typed generalisation of the goal with type: " ++
pr_leconstr_env env sigma ty ++ str "."
let explain_no_occurrence_found env sigma c id =
let c = EConstr.to_constr sigma c in
str "Found no subterm matching " ++ pr_lconstr_env env sigma c ++
str " in " ++
(match id with
| Some id -> pr_id id
| None -> str"the current goal") ++ str "."
let explain_cannot_unify_binding_type env sigma m n =
let pm = pr_leconstr_env env sigma m in
let pn = pr_leconstr_env env sigma n in
str "This binding has type" ++ brk(1,1) ++ pm ++ spc () ++
str "which should be unifiable with" ++ brk(1,1) ++ pn ++ str "."
let explain_cannot_find_well_typed_abstraction env sigma p l e =
let p = EConstr.to_constr sigma p in
str "Abstracting over the " ++
str (String.plural (List.length l) "term") ++ spc () ++
hov 0 (pr_enum (fun c -> pr_lconstr_env env sigma (EConstr.to_constr sigma c)) l) ++ spc () ++
str "leads to a term" ++ spc () ++ pr_lconstr_goal_style_env env sigma p ++
spc () ++ str "which is ill-typed." ++
(match e with None -> mt () | Some e -> fnl () ++ str "Reason is: " ++ e)
let explain_wrong_abstraction_type env sigma na abs expected result =
let abs = EConstr.to_constr sigma abs in
let expected = EConstr.to_constr sigma expected in
let result = EConstr.to_constr sigma result in
let ppname = match na with Name id -> pr_id id ++ spc () | _ -> mt () in
str "Cannot instantiate metavariable " ++ ppname ++ strbrk "of type " ++
pr_lconstr_env env sigma expected ++ strbrk " with abstraction " ++
pr_lconstr_env env sigma abs ++ strbrk " of incompatible type " ++
pr_lconstr_env env sigma result ++ str "."
let explain_abstraction_over_meta _ m n =
strbrk "Too complex unification problem: cannot find a solution for both " ++
Name.print m ++ spc () ++ str "and " ++ Name.print n ++ str "."
let explain_non_linear_unification env sigma m t =
let t = EConstr.to_constr sigma t in
strbrk "Cannot unambiguously instantiate " ++
Name.print m ++ str ":" ++
strbrk " which would require to abstract twice on " ++
pr_lconstr_env env sigma t ++ str "."
let explain_unsatisfied_constraints env sigma cst =
strbrk "Unsatisfied constraints: " ++
Univ.pr_constraints (Termops.pr_evd_level sigma) cst ++
spc () ++ str "(maybe a bugged tactic)."
let explain_type_error env sigma err =
let env = make_all_name_different env sigma in
match err with
| UnboundRel n ->
explain_unbound_rel env sigma n
| UnboundVar v ->
explain_unbound_var env v
| NotAType j ->
explain_not_type env sigma j
| BadAssumption c ->
explain_bad_assumption env sigma c
| ReferenceVariables (id,c) ->
explain_reference_variables sigma id c
| ElimArity (ind, aritylst, c, pj, okinds) ->
explain_elim_arity env sigma ind aritylst c pj okinds
| CaseNotInductive cj ->
explain_case_not_inductive env sigma cj
| NumberBranches (cj, n) ->
explain_number_branches env sigma cj n
| IllFormedBranch (c, i, actty, expty) ->
explain_ill_formed_branch env sigma c i actty expty
| Generalization (nvar, c) ->
explain_generalization env sigma nvar c
| ActualType (j, pt) ->
explain_actual_type env sigma j pt None
| CantApplyBadType (t, rator, randl) ->
explain_cant_apply_bad_type env sigma t rator randl
| CantApplyNonFunctional (rator, randl) ->
explain_cant_apply_not_functional env sigma rator randl
| IllFormedRecBody (err, lna, i, fixenv, vdefj) ->
explain_ill_formed_rec_body env sigma err lna i fixenv vdefj
| IllTypedRecBody (i, lna, vdefj, vargs) ->
explain_ill_typed_rec_body env sigma i lna vdefj vargs
| WrongCaseInfo (ind,ci) ->
explain_wrong_case_info env ind ci
| UnsatisfiedConstraints cst ->
explain_unsatisfied_constraints env sigma cst
let pr_position (cl,pos) =
let clpos = match cl with
| None -> str " of the goal"
| Some (id,Locus.InHyp) -> str " of hypothesis " ++ pr_id id
| Some (id,Locus.InHypTypeOnly) -> str " of the type of hypothesis " ++ pr_id id
| Some (id,Locus.InHypValueOnly) -> str " of the body of hypothesis " ++ pr_id id in
int pos ++ clpos
let explain_cannot_unify_occurrences env sigma nested ((cl2,pos2),t2) ((cl1,pos1),t1) e =
if nested then
str "Found nested occurrences of the pattern at positions " ++
int pos1 ++ strbrk " and " ++ pr_position (cl2,pos2) ++ str "."
else
let ppreason = match e with
| None -> mt()
| Some (c1,c2,e) ->
explain_unification_error env sigma c1 c2 (Some e)
in
str "Found incompatible occurrences of the pattern" ++ str ":" ++
spc () ++ str "Matched term " ++ pr_lconstr_env env sigma (EConstr.to_constr sigma t2) ++
strbrk " at position " ++ pr_position (cl2,pos2) ++
strbrk " is not compatible with matched term " ++
pr_lconstr_env env sigma (EConstr.to_constr sigma t1) ++ strbrk " at position " ++
pr_position (cl1,pos1) ++ ppreason ++ str "."
let pr_constraints printenv env sigma evars cstrs =
let (ev, evi) = Evar.Map.choose evars in
if Evar.Map.for_all (fun ev' evi' ->
eq_named_context_val evi.evar_hyps evi'.evar_hyps) evars
then
let l = Evar.Map.bindings evars in
let env' = reset_with_named_context evi.evar_hyps env in
let pe =
if printenv then
pr_ne_context_of (str "In environment:") env' sigma
else mt ()
in
let evs =
prlist
(fun (ev, evi) -> fnl () ++ pr_existential_key sigma ev ++
str " : " ++ pr_lconstr_env env' sigma evi.evar_concl ++ fnl ()) l
in
h 0 (pe ++ evs ++ pr_evar_constraints sigma cstrs)
else
let filter evk _ = Evar.Map.mem evk evars in
pr_evar_map_filter ~with_univs:false filter sigma
let explain_unsatisfiable_constraints env sigma constr comp =
let (_, constraints) = Evd.extract_all_conv_pbs sigma in
let undef = Evd.undefined_map sigma in
(** Only keep evars that are subject to resolution and members of the given
component. *)
let is_kept evk evi = match comp with
| None -> Typeclasses.is_resolvable evi
| Some comp -> Typeclasses.is_resolvable evi && Evar.Set.mem evk comp
in
let undef =
let m = Evar.Map.filter is_kept undef in
if Evar.Map.is_empty m then undef
else m
in
match constr with
| None ->
str "Unable to satisfy the following constraints:" ++ fnl () ++
pr_constraints true env sigma undef constraints
| Some (ev, k) ->
let cstr =
let remaining = Evar.Map.remove ev undef in
if not (Evar.Map.is_empty remaining) then
str "With the following constraints:" ++ fnl () ++
pr_constraints false env sigma remaining constraints
else mt ()
in
let info = Evar.Map.find ev undef in
explain_typeclass_resolution env sigma info k ++ fnl () ++ cstr
let explain_pretype_error env sigma err =
let env = Evardefine.env_nf_betaiotaevar sigma env in
let env = make_all_name_different env sigma in
match err with
| CantFindCaseType c -> explain_cant_find_case_type env sigma c
| ActualTypeNotCoercible (j,t,e) ->
let {uj_val = c; uj_type = actty} = j in
let (env, c, actty, expty), e = contract3' env sigma c actty t e in
let j = {uj_val = c; uj_type = actty} in
explain_actual_type env sigma j expty (Some e)
| UnifOccurCheck (ev,rhs) -> explain_occur_check env sigma ev rhs
| UnsolvableImplicit (evk,exp) -> explain_unsolvable_implicit env sigma evk exp
| VarNotFound id -> explain_var_not_found env id
| UnexpectedType (actual,expect) ->
let env, actual, expect = contract2 env sigma actual expect in
explain_unexpected_type env sigma actual expect
| NotProduct c -> explain_not_product env sigma c
| CannotUnify (m,n,e) ->
let env, m, n = contract2 env sigma m n in
explain_cannot_unify env sigma m n e
| CannotUnifyLocal (m,n,sn) -> explain_cannot_unify_local env sigma m n sn
| CannotGeneralize ty -> explain_refiner_cannot_generalize env sigma ty
| NoOccurrenceFound (c, id) -> explain_no_occurrence_found env sigma c id
| CannotUnifyBindingType (m,n) -> explain_cannot_unify_binding_type env sigma m n
| CannotFindWellTypedAbstraction (p,l,e) ->
explain_cannot_find_well_typed_abstraction env sigma p l
(Option.map (fun (env',e) -> explain_type_error env' sigma e) e)
| WrongAbstractionType (n,a,t,u) ->
explain_wrong_abstraction_type env sigma n a t u
| AbstractionOverMeta (m,n) -> explain_abstraction_over_meta env m n
| NonLinearUnification (m,c) -> explain_non_linear_unification env sigma m c
| TypingError t -> explain_type_error env sigma t
| CannotUnifyOccurrences (b,c1,c2,e) -> explain_cannot_unify_occurrences env sigma b c1 c2 e
| UnsatisfiableConstraints (c,comp) -> explain_unsatisfiable_constraints env sigma c comp
(* Module errors *)
open Modops
let explain_not_match_error = function
| InductiveFieldExpected _ ->
strbrk "an inductive definition is expected"
| DefinitionFieldExpected ->
strbrk "a definition is expected"
| ModuleFieldExpected ->
strbrk "a module is expected"
| ModuleTypeFieldExpected ->
strbrk "a module type is expected"
| NotConvertibleInductiveField id | NotConvertibleConstructorField id ->
str "types given to " ++ pr_id id ++ str " differ"
| NotConvertibleBodyField ->
str "the body of definitions differs"
| NotConvertibleTypeField (env, typ1, typ2) ->
str "expected type" ++ spc () ++
quote (Printer.safe_pr_lconstr_env env Evd.empty typ2) ++ spc () ++
str "but found type" ++ spc () ++
quote (Printer.safe_pr_lconstr_env env Evd.empty typ1)
| NotSameConstructorNamesField ->
str "constructor names differ"
| NotSameInductiveNameInBlockField ->
str "inductive types names differ"
| FiniteInductiveFieldExpected isfinite ->
str "type is expected to be " ++
str (if isfinite then "coinductive" else "inductive")
| InductiveNumbersFieldExpected n ->
str "number of inductive types differs"
| InductiveParamsNumberField n ->
str "inductive type has not the right number of parameters"
| RecordFieldExpected isrecord ->
str "type is expected " ++ str (if isrecord then "" else "not ") ++
str "to be a record"
| RecordProjectionsExpected nal ->
(if List.length nal >= 2 then str "expected projection names are "
else str "expected projection name is ") ++
pr_enum (function Name id -> pr_id id | _ -> str "_") nal
| NotEqualInductiveAliases ->
str "Aliases to inductive types do not match"
| NoTypeConstraintExpected ->
strbrk "a definition whose type is constrained can only be subtype " ++
strbrk "of a definition whose type is itself constrained"
| CumulativeStatusExpected b ->
let status b = if b then str"cumulative" else str"non-cumulative" in
str "a " ++ status b ++ str" declaration was expected, but a " ++
status (not b) ++ str" declaration was found"
| PolymorphicStatusExpected b ->
let status b = if b then str"polymorphic" else str"monomorphic" in
str "a " ++ status b ++ str" declaration was expected, but a " ++
status (not b) ++ str" declaration was found"
| IncompatibleInstances ->
str"polymorphic universe instances do not match"
| IncompatibleUniverses incon ->
str"the universe constraints are inconsistent: " ++
Univ.explain_universe_inconsistency Universes.pr_with_global_universes incon
| IncompatiblePolymorphism (env, t1, t2) ->
str "conversion of polymorphic values generates additional constraints: " ++
quote (Printer.safe_pr_lconstr_env env Evd.empty t1) ++ spc () ++
str "compared to " ++ spc () ++
quote (Printer.safe_pr_lconstr_env env Evd.empty t2)
| IncompatibleConstraints cst ->
str " the expected (polymorphic) constraints do not imply " ++
let cst = Univ.AUContext.instantiate (Univ.AUContext.instance cst) cst in
quote (Univ.pr_constraints (Termops.pr_evd_level Evd.empty) cst)
let explain_signature_mismatch l spec why =
str "Signature components for label " ++ pr_label l ++
str " do not match:" ++ spc () ++ explain_not_match_error why ++ str "."
let explain_label_already_declared l =
str "The label " ++ pr_label l ++ str " is already declared."
let explain_application_to_not_path _ =
strbrk "A module cannot be applied to another module application or " ++
strbrk "with-expression; you must give a name to the intermediate result " ++
strbrk "module first."
let explain_not_a_functor () =
str "Application of a non-functor."
let explain_is_a_functor () =
str "Illegal use of a functor."
let explain_incompatible_module_types mexpr1 mexpr2 =
let open Declarations in
let rec get_arg = function
| NoFunctor _ -> 0
| MoreFunctor (_, _, ty) -> succ (get_arg ty)
in
let len1 = get_arg mexpr1.mod_type in
let len2 = get_arg mexpr2.mod_type in
if len1 <> len2 then
str "Incompatible module types: module expects " ++ int len2 ++
str " arguments, found " ++ int len1 ++ str "."
else str "Incompatible module types."
let explain_not_equal_module_paths mp1 mp2 =
str "Non equal modules."
let explain_no_such_label l =
str "No such label " ++ pr_label l ++ str "."
let explain_incompatible_labels l l' =
str "Opening and closing labels are not the same: " ++
pr_label l ++ str " <> " ++ pr_label l' ++ str "!"
let explain_not_a_module s =
quote (str s) ++ str " is not a module."
let explain_not_a_module_type s =
quote (str s) ++ str " is not a module type."
let explain_not_a_constant l =
quote (pr_label l) ++ str " is not a constant."
let explain_incorrect_label_constraint l =
str "Incorrect constraint for label " ++
quote (pr_label l) ++ str "."
let explain_generative_module_expected l =
str "The module " ++ pr_label l ++ str " is not generative." ++
strbrk " Only components of generative modules can be changed" ++
strbrk " using the \"with\" construct."
let explain_label_missing l s =
str "The field " ++ pr_label l ++ str " is missing in "
++ str s ++ str "."
let explain_include_restricted_functor mp =
let q = Nametab.shortest_qualid_of_module mp in
str "Cannot include the functor " ++ Libnames.pr_qualid q ++
strbrk " since it has a restricted signature. " ++
strbrk "You may name first an instance of this functor, and include it."
let explain_module_error = function
| SignatureMismatch (l,spec,err) -> explain_signature_mismatch l spec err
| LabelAlreadyDeclared l -> explain_label_already_declared l
| ApplicationToNotPath mexpr -> explain_application_to_not_path mexpr
| NotAFunctor -> explain_not_a_functor ()
| IsAFunctor -> explain_is_a_functor ()
| IncompatibleModuleTypes (m1,m2) -> explain_incompatible_module_types m1 m2
| NotEqualModulePaths (mp1,mp2) -> explain_not_equal_module_paths mp1 mp2
| NoSuchLabel l -> explain_no_such_label l
| IncompatibleLabels (l1,l2) -> explain_incompatible_labels l1 l2
| NotAModule s -> explain_not_a_module s
| NotAModuleType s -> explain_not_a_module_type s
| NotAConstant l -> explain_not_a_constant l
| IncorrectWithConstraint l -> explain_incorrect_label_constraint l
| GenerativeModuleExpected l -> explain_generative_module_expected l
| LabelMissing (l,s) -> explain_label_missing l s
| IncludeRestrictedFunctor mp -> explain_include_restricted_functor mp
(* Module internalization errors *)
(*
let explain_declaration_not_path _ =
str "Declaration is not a path."
*)
let explain_not_module_nor_modtype s =
quote (str s) ++ str " is not a module or module type."
let explain_incorrect_with_in_module () =
str "The syntax \"with\" is not allowed for modules."
let explain_incorrect_module_application () =
str "Illegal application to a module type."
open Modintern
let explain_module_internalization_error = function
| NotAModuleNorModtype s -> explain_not_module_nor_modtype s
| IncorrectWithInModule -> explain_incorrect_with_in_module ()
| IncorrectModuleApplication -> explain_incorrect_module_application ()
(* Typeclass errors *)
let explain_not_a_class env c =
let c = EConstr.to_constr Evd.empty c in
pr_constr_env env Evd.empty c ++ str" is not a declared type class."
let explain_unbound_method env cid id =
str "Unbound method name " ++ Nameops.pr_id (snd id) ++ spc () ++
str"of class" ++ spc () ++ pr_global cid ++ str "."
let pr_constr_exprs exprs =
hv 0 (List.fold_right
(fun d pps -> ws 2 ++ Ppconstr.pr_constr_expr d ++ pps)
exprs (mt ()))
let explain_mismatched_contexts env c i j =
str"Mismatched contexts while declaring instance: " ++ brk (1,1) ++
hov 1 (str"Expected:" ++ brk (1, 1) ++ pr_rel_context env Evd.empty j) ++
fnl () ++ brk (1,1) ++
hov 1 (str"Found:" ++ brk (1, 1) ++ pr_constr_exprs i)
let explain_typeclass_error env = function
| NotAClass c -> explain_not_a_class env c
| UnboundMethod (cid, id) -> explain_unbound_method env cid id
| MismatchedContextInstance (c,i,j) -> explain_mismatched_contexts env c i j
(* Refiner errors *)
let explain_refiner_bad_type arg ty conclty =
str "Refiner was given an argument" ++ brk(1,1) ++
pr_lconstr arg ++ spc () ++
str "of type" ++ brk(1,1) ++ pr_lconstr ty ++ spc () ++
str "instead of" ++ brk(1,1) ++ pr_lconstr conclty ++ str "."
let explain_refiner_unresolved_bindings l =
str "Unable to find an instance for the " ++
str (String.plural (List.length l) "variable") ++ spc () ++
prlist_with_sep pr_comma Name.print l ++ str"."
let explain_refiner_cannot_apply t harg =
str "In refiner, a term of type" ++ brk(1,1) ++
pr_lconstr t ++ spc () ++ str "could not be applied to" ++ brk(1,1) ++
pr_lconstr harg ++ str "."
let explain_refiner_not_well_typed c =
str "The term " ++ pr_lconstr c ++ str " is not well-typed."
let explain_intro_needs_product () =
str "Introduction tactics needs products."
let explain_does_not_occur_in c hyp =
str "The term" ++ spc () ++ pr_lconstr c ++ spc () ++
str "does not occur in" ++ spc () ++ pr_id hyp ++ str "."
let explain_non_linear_proof c =
str "Cannot refine with term" ++ brk(1,1) ++ pr_lconstr c ++
spc () ++ str "because a metavariable has several occurrences."
let explain_meta_in_type c =
str "In refiner, a meta appears in the type " ++ brk(1,1) ++ pr_leconstr c ++
str " of another meta"
let explain_no_such_hyp id =
str "No such hypothesis: " ++ pr_id id
let explain_refiner_error = function
| BadType (arg,ty,conclty) -> explain_refiner_bad_type arg ty conclty
| UnresolvedBindings t -> explain_refiner_unresolved_bindings t
| CannotApply (t,harg) -> explain_refiner_cannot_apply t harg
| NotWellTyped c -> explain_refiner_not_well_typed c
| IntroNeedsProduct -> explain_intro_needs_product ()
| DoesNotOccurIn (c,hyp) -> explain_does_not_occur_in c hyp
| NonLinearProof c -> explain_non_linear_proof c
| MetaInType c -> explain_meta_in_type c
| NoSuchHyp id -> explain_no_such_hyp id
(* Inductive errors *)
let error_non_strictly_positive env c v =
let pc = pr_lconstr_env env Evd.empty c in
let pv = pr_lconstr_env env Evd.empty v in
str "Non strictly positive occurrence of " ++ pv ++ str " in" ++
brk(1,1) ++ pc ++ str "."
let error_ill_formed_inductive env c v =
let pc = pr_lconstr_env env Evd.empty c in
let pv = pr_lconstr_env env Evd.empty v in
str "Not enough arguments applied to the " ++ pv ++
str " in" ++ brk(1,1) ++ pc ++ str "."
let error_ill_formed_constructor env id c v nparams nargs =
let pv = pr_lconstr_env env Evd.empty v in
let atomic = Int.equal (nb_prod Evd.empty (EConstr.of_constr c)) (** FIXME *) 0 in
str "The type of constructor" ++ brk(1,1) ++ pr_id id ++ brk(1,1) ++
str "is not valid;" ++ brk(1,1) ++
strbrk (if atomic then "it must be " else "its conclusion must be ") ++
pv ++
(* warning: because of implicit arguments it is difficult to say which
parameters must be explicitly given *)
(if not (Int.equal nparams 0) then
strbrk " applied to its " ++ str (String.plural nparams "parameter")
else
mt()) ++
(if not (Int.equal nargs 0) then
str (if not (Int.equal nparams 0) then " and" else " applied") ++
strbrk " to some " ++ str (String.plural nargs "argument")
else
mt()) ++ str "."
let pr_ltype_using_barendregt_convention_env env c =
(* Use goal_concl_style as an approximation of Barendregt's convention (?) *)
quote (pr_goal_concl_style_env env Evd.empty (EConstr.of_constr c))
let error_bad_ind_parameters env c n v1 v2 =
let pc = pr_ltype_using_barendregt_convention_env env c in
let pv1 = pr_lconstr_env env Evd.empty v1 in
let pv2 = pr_lconstr_env env Evd.empty v2 in
str "Last occurrence of " ++ pv2 ++ str " must have " ++ pv1 ++
str " as " ++ pr_nth n ++ str " argument in" ++ brk(1,1) ++ pc ++ str "."
let error_same_names_types id =
str "The name" ++ spc () ++ pr_id id ++ spc () ++
str "is used more than once."
let error_same_names_constructors id =
str "The constructor name" ++ spc () ++ pr_id id ++ spc () ++
str "is used more than once."
let error_same_names_overlap idl =
strbrk "The following names are used both as type names and constructor " ++
str "names:" ++ spc () ++
prlist_with_sep pr_comma pr_id idl ++ str "."
let error_not_an_arity env c =
str "The type" ++ spc () ++ pr_lconstr_env env Evd.empty c ++ spc () ++
str "is not an arity."
let error_bad_entry () =
str "Bad inductive definition."
let error_large_non_prop_inductive_not_in_type () =
str "Large non-propositional inductive types must be in Type."
(* Recursion schemes errors *)
let error_not_allowed_case_analysis isrec kind i =
str (if isrec then "Induction" else "Case analysis") ++
strbrk " on sort " ++ pr_sort Evd.empty kind ++
strbrk " is not allowed for inductive definition " ++
pr_inductive (Global.env()) (fst i) ++ str "."
let error_not_allowed_dependent_analysis isrec i =
str "Dependent " ++ str (if isrec then "Induction" else "Case analysis") ++
strbrk " is not allowed for inductive definition " ++
pr_inductive (Global.env()) i ++ str "."
let error_not_mutual_in_scheme ind ind' =
if eq_ind ind ind' then
str "The inductive type " ++ pr_inductive (Global.env()) ind ++
str " occurs twice."
else
str "The inductive types " ++ pr_inductive (Global.env()) ind ++ spc () ++
str "and" ++ spc () ++ pr_inductive (Global.env()) ind' ++ spc () ++
str "are not mutually defined."
(* Inductive constructions errors *)
let explain_inductive_error = function
| NonPos (env,c,v) -> error_non_strictly_positive env c v
| NotEnoughArgs (env,c,v) -> error_ill_formed_inductive env c v
| NotConstructor (env,id,c,v,n,m) ->
error_ill_formed_constructor env id c v n m
| NonPar (env,c,n,v1,v2) -> error_bad_ind_parameters env c n v1 v2
| SameNamesTypes id -> error_same_names_types id
| SameNamesConstructors id -> error_same_names_constructors id
| SameNamesOverlap idl -> error_same_names_overlap idl
| NotAnArity (env, c) -> error_not_an_arity env c
| BadEntry -> error_bad_entry ()
| LargeNonPropInductiveNotInType ->
error_large_non_prop_inductive_not_in_type ()
(* Recursion schemes errors *)
let explain_recursion_scheme_error = function
| NotAllowedCaseAnalysis (isrec,k,i) ->
error_not_allowed_case_analysis isrec k i
| NotMutualInScheme (ind,ind')-> error_not_mutual_in_scheme ind ind'
| NotAllowedDependentAnalysis (isrec, i) ->
error_not_allowed_dependent_analysis isrec i
(* Pattern-matching errors *)
let explain_bad_pattern env sigma cstr ty =
let ty = EConstr.to_constr sigma ty in
let env = make_all_name_different env sigma in
let pt = pr_lconstr_env env sigma ty in
let pc = pr_constructor env cstr in
str "Found the constructor " ++ pc ++ brk(1,1) ++
str "while matching a term of type " ++ pt ++ brk(1,1) ++
str "which is not an inductive type."
let explain_bad_constructor env cstr ind =
let pi = pr_inductive env ind in
(* let pc = pr_constructor env cstr in*)
let pt = pr_inductive env (inductive_of_constructor cstr) in
str "Found a constructor of inductive type " ++ pt ++ brk(1,1) ++
str "while a constructor of " ++ pi ++ brk(1,1) ++
str "is expected."
let decline_string n s =
if Int.equal n 0 then str "no " ++ str s ++ str "s"
else if Int.equal n 1 then str "1 " ++ str s
else (int n ++ str " " ++ str s ++ str "s")
let explain_wrong_numarg_constructor env cstr n =
str "The constructor " ++ pr_constructor env cstr ++
str " (in type " ++ pr_inductive env (inductive_of_constructor cstr) ++
str ") expects " ++ decline_string n "argument" ++ str "."
let explain_wrong_numarg_inductive env ind n =
str "The inductive type " ++ pr_inductive env ind ++
str " expects " ++ decline_string n "argument" ++ str "."
let explain_unused_clause env pats =
(* Without localisation
let s = if List.length pats > 1 then "s" else "" in
(str ("Unused clause with pattern"^s) ++ spc () ++
hov 0 (pr_sequence pr_cases_pattern pats) ++ str ")")
*)
str "This clause is redundant."
let explain_non_exhaustive env pats =
str "Non exhaustive pattern-matching: no clause found for " ++
str (String.plural (List.length pats) "pattern") ++
spc () ++ hov 0 (prlist_with_sep pr_comma pr_cases_pattern pats)
let explain_cannot_infer_predicate env sigma typs =
let inj c = EConstr.to_constr sigma c in
let typs = Array.map_to_list (fun (c1, c2) -> (inj c1, inj c2)) typs in
let env = make_all_name_different env sigma in
let pr_branch (cstr,typ) =
let cstr,_ = decompose_app cstr in
str "For " ++ pr_lconstr_env env sigma cstr ++ str ": " ++ pr_lconstr_env env sigma typ
in
str "Unable to unify the types found in the branches:" ++
spc () ++ hov 0 (prlist_with_sep fnl pr_branch typs)
let explain_pattern_matching_error env sigma = function
| BadPattern (c,t) ->
explain_bad_pattern env sigma c t
| BadConstructor (c,ind) ->
explain_bad_constructor env c ind
| WrongNumargConstructor (c,n) ->
explain_wrong_numarg_constructor env c n
| WrongNumargInductive (c,n) ->
explain_wrong_numarg_inductive env c n
| UnusedClause tms ->
explain_unused_clause env tms
| NonExhaustive tms ->
explain_non_exhaustive env tms
| CannotInferPredicate typs ->
explain_cannot_infer_predicate env sigma typs
let map_pguard_error f = function
| NotEnoughAbstractionInFixBody -> NotEnoughAbstractionInFixBody
| RecursionNotOnInductiveType c -> RecursionNotOnInductiveType (f c)
| RecursionOnIllegalTerm (n, (env, c), l1, l2) -> RecursionOnIllegalTerm (n, (env, f c), l1, l2)
| NotEnoughArgumentsForFixCall n -> NotEnoughArgumentsForFixCall n
| CodomainNotInductiveType c -> CodomainNotInductiveType (f c)
| NestedRecursiveOccurrences -> NestedRecursiveOccurrences
| UnguardedRecursiveCall c -> UnguardedRecursiveCall (f c)
| RecCallInTypeOfAbstraction c -> RecCallInTypeOfAbstraction (f c)
| RecCallInNonRecArgOfConstructor c -> RecCallInNonRecArgOfConstructor (f c)
| RecCallInTypeOfDef c -> RecCallInTypeOfDef (f c)
| RecCallInCaseFun c -> RecCallInCaseFun (f c)
| RecCallInCaseArg c -> RecCallInCaseArg (f c)
| RecCallInCasePred c -> RecCallInCasePred (f c)
| NotGuardedForm c -> NotGuardedForm (f c)
| ReturnPredicateNotCoInductive c -> ReturnPredicateNotCoInductive (f c)
let map_ptype_error f = function
| UnboundRel n -> UnboundRel n
| UnboundVar id -> UnboundVar id
| NotAType j -> NotAType (on_judgment f j)
| BadAssumption j -> BadAssumption (on_judgment f j)
| ReferenceVariables (id, c) -> ReferenceVariables (id, f c)
| ElimArity (pi, dl, c, j, ar) -> ElimArity (pi, dl, f c, on_judgment f j, ar)
| CaseNotInductive j -> CaseNotInductive (on_judgment f j)
| WrongCaseInfo (pi, ci) -> WrongCaseInfo (pi, ci)
| NumberBranches (j, n) -> NumberBranches (on_judgment f j, n)
| IllFormedBranch (c, pc, t1, t2) -> IllFormedBranch (f c, pc, f t1, f t2)
| Generalization ((na, t), j) -> Generalization ((na, f t), on_judgment f j)
| ActualType (j, t) -> ActualType (on_judgment f j, f t)
| CantApplyBadType ((n, c1, c2), j, vj) ->
CantApplyBadType ((n, f c1, f c2), on_judgment f j, Array.map (on_judgment f) vj)
| CantApplyNonFunctional (j, jv) -> CantApplyNonFunctional (on_judgment f j, Array.map (on_judgment f) jv)
| IllFormedRecBody (ge, na, n, env, jv) ->
IllFormedRecBody (map_pguard_error f ge, na, n, env, Array.map (on_judgment f) jv)
| IllTypedRecBody (n, na, jv, t) ->
IllTypedRecBody (n, na, Array.map (on_judgment f) jv, Array.map f t)
| UnsatisfiedConstraints g -> UnsatisfiedConstraints g
let explain_reduction_tactic_error = function
| Tacred.InvalidAbstraction (env,sigma,c,(env',e)) ->
let e = map_ptype_error EConstr.of_constr e in
str "The abstracted term" ++ spc () ++
quote (pr_goal_concl_style_env env sigma c) ++
spc () ++ str "is not well typed." ++ fnl () ++
explain_type_error env' Evd.empty e
|