1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Flags
open Term
open Vars
open Termops
open Environ
open Redexpr
open Declare
open Names
open Libnames
open Globnames
open Nameops
open Constrexpr
open Constrexpr_ops
open Topconstr
open Constrintern
open Nametab
open Impargs
open Reductionops
open Indtypes
open Decl_kinds
open Pretyping
open Evarutil
open Evarconv
open Indschemes
open Misctypes
open Vernacexpr
open Context.Rel.Declaration
open Entries
module RelDecl = Context.Rel.Declaration
let do_universe poly l = Declare.do_universe poly l
let do_constraint poly l = Declare.do_constraint poly l
let rec under_binders env sigma f n c =
if Int.equal n 0 then f env sigma (EConstr.of_constr c) else
match kind_of_term c with
| Lambda (x,t,c) ->
mkLambda (x,t,under_binders (push_rel (LocalAssum (x,t)) env) sigma f (n-1) c)
| LetIn (x,b,t,c) ->
mkLetIn (x,b,t,under_binders (push_rel (LocalDef (x,b,t)) env) sigma f (n-1) c)
| _ -> assert false
let rec complete_conclusion a cs = CAst.map_with_loc (fun ?loc -> function
| CProdN (bl,c) -> CProdN (bl,complete_conclusion a cs c)
| CLetIn (na,b,t,c) -> CLetIn (na,b,t,complete_conclusion a cs c)
| CHole (k, _, _) ->
let (has_no_args,name,params) = a in
if not has_no_args then
user_err ?loc
(strbrk"Cannot infer the non constant arguments of the conclusion of "
++ pr_id cs ++ str ".");
let args = List.map (fun id -> CAst.make ?loc @@ CRef(Ident(loc,id),None)) params in
CAppExpl ((None,Ident(loc,name),None),List.rev args)
| c -> c
)
(* Commands of the interface *)
(* 1| Constant definitions *)
let red_constant_entry n ce sigma = function
| None -> ce
| Some red ->
let proof_out = ce.const_entry_body in
let env = Global.env () in
let (redfun, _) = reduction_of_red_expr env red in
let redfun env sigma c =
let (_, c) = redfun env sigma c in
EConstr.Unsafe.to_constr c
in
{ ce with const_entry_body = Future.chain ~pure:true proof_out
(fun ((body,ctx),eff) -> (under_binders env sigma redfun n body,ctx),eff) }
let warn_implicits_in_term =
CWarnings.create ~name:"implicits-in-term" ~category:"implicits"
(fun () ->
strbrk "Implicit arguments declaration relies on type." ++ spc () ++
strbrk "The term declares more implicits than the type here.")
let interp_definition pl bl p red_option c ctypopt =
let env = Global.env() in
let ctx = Evd.make_evar_universe_context env pl in
let evdref = ref (Evd.from_ctx ctx) in
let impls, ((env_bl, ctx), imps1) = interp_context_evars env evdref bl in
let ctx = List.map (fun d -> map_rel_decl EConstr.Unsafe.to_constr d) ctx in
let nb_args = Context.Rel.nhyps ctx in
let imps,pl,ce =
match ctypopt with
None ->
let subst = evd_comb0 Evd.nf_univ_variables evdref in
let ctx = Context.Rel.map (Vars.subst_univs_constr subst) ctx in
let env_bl = push_rel_context ctx env in
let c, imps2 = interp_constr_evars_impls ~impls env_bl evdref c in
let c = EConstr.Unsafe.to_constr c in
let nf,subst = Evarutil.e_nf_evars_and_universes evdref in
let body = nf (it_mkLambda_or_LetIn c ctx) in
let vars = Univops.universes_of_constr body in
let evd = Evd.restrict_universe_context !evdref vars in
let pl, uctx = Evd.universe_context ?names:pl evd in
imps1@(Impargs.lift_implicits nb_args imps2), pl,
definition_entry ~univs:uctx ~poly:p body
| Some ctyp ->
let ty, impsty = interp_type_evars_impls ~impls env_bl evdref ctyp in
let subst = evd_comb0 Evd.nf_univ_variables evdref in
let ctx = Context.Rel.map (Vars.subst_univs_constr subst) ctx in
let env_bl = push_rel_context ctx env in
let c, imps2 = interp_casted_constr_evars_impls ~impls env_bl evdref c ty in
let c = EConstr.Unsafe.to_constr c in
let nf, subst = Evarutil.e_nf_evars_and_universes evdref in
let body = nf (it_mkLambda_or_LetIn c ctx) in
let ty = EConstr.Unsafe.to_constr ty in
let typ = nf (Term.it_mkProd_or_LetIn ty ctx) in
let beq b1 b2 = if b1 then b2 else not b2 in
let impl_eq (x,y,z) (x',y',z') = beq x x' && beq y y' && beq z z' in
(* Check that all implicit arguments inferable from the term
are inferable from the type *)
let chk (key,va) =
impl_eq (List.assoc_f Pervasives.(=) key impsty) va (* FIXME *)
in
if not (try List.for_all chk imps2 with Not_found -> false)
then warn_implicits_in_term ();
let vars = Univ.LSet.union (Univops.universes_of_constr body)
(Univops.universes_of_constr typ) in
let ctx = Evd.restrict_universe_context !evdref vars in
let pl, uctx = Evd.universe_context ?names:pl ctx in
imps1@(Impargs.lift_implicits nb_args impsty), pl,
definition_entry ~types:typ ~poly:p
~univs:uctx body
in
red_constant_entry (Context.Rel.length ctx) ce !evdref red_option, !evdref, pl, imps
let check_definition (ce, evd, _, imps) =
check_evars_are_solved (Global.env ()) evd Evd.empty;
ce
let do_definition ident k pl bl red_option c ctypopt hook =
let (ce, evd, pl', imps as def) =
interp_definition pl bl (pi2 k) red_option c ctypopt
in
if Flags.is_program_mode () then
let env = Global.env () in
let (c,ctx), sideff = Future.force ce.const_entry_body in
assert(Safe_typing.empty_private_constants = sideff);
assert(Univ.ContextSet.is_empty ctx);
let typ = match ce.const_entry_type with
| Some t -> t
| None -> EConstr.to_constr evd (Retyping.get_type_of env evd (EConstr.of_constr c))
in
Obligations.check_evars env evd;
let obls, _, c, cty =
Obligations.eterm_obligations env ident evd 0 c typ
in
let ctx = Evd.evar_universe_context evd in
let hook = Lemmas.mk_hook (fun l r _ -> Lemmas.call_hook (fun exn -> exn) hook l r) in
ignore(Obligations.add_definition
ident ~term:c cty ctx ?pl ~implicits:imps ~kind:k ~hook obls)
else let ce = check_definition def in
ignore(DeclareDef.declare_definition ident k ce pl' imps
(Lemmas.mk_hook
(fun l r -> Lemmas.call_hook (fun exn -> exn) hook l r;r)))
(* 2| Variable/Hypothesis/Parameter/Axiom declarations *)
let declare_assumption is_coe (local,p,kind) (c,ctx) pl imps impl nl (_,ident) =
match local with
| Discharge when Lib.sections_are_opened () ->
let decl = (Lib.cwd(), SectionLocalAssum ((c,ctx),p,impl), IsAssumption kind) in
let _ = declare_variable ident decl in
let () = assumption_message ident in
let () =
if not !Flags.quiet && Proof_global.there_are_pending_proofs () then
Feedback.msg_info (str"Variable" ++ spc () ++ pr_id ident ++
strbrk " is not visible from current goals")
in
let r = VarRef ident in
let () = Typeclasses.declare_instance None true r in
let () = if is_coe then Class.try_add_new_coercion r ~local:true false in
(r,Univ.Instance.empty,true)
| Global | Local | Discharge ->
let local = DeclareDef.get_locality ident ~kind:"axiom" local in
let inl = match nl with
| NoInline -> None
| DefaultInline -> Some (Flags.get_inline_level())
| InlineAt i -> Some i
in
let ctx = Univ.ContextSet.to_context ctx in
let decl = (ParameterEntry (None,p,(c,ctx),inl), IsAssumption kind) in
let kn = declare_constant ident ~local decl in
let gr = ConstRef kn in
let () = maybe_declare_manual_implicits false gr imps in
let () = Universes.register_universe_binders gr pl in
let () = assumption_message ident in
let () = Typeclasses.declare_instance None false gr in
let () = if is_coe then Class.try_add_new_coercion gr ~local p in
let inst =
if p (* polymorphic *) then Univ.UContext.instance ctx
else Univ.Instance.empty
in
(gr,inst,Lib.is_modtype_strict ())
let interp_assumption evdref env impls bl c =
let c = mkCProdN ?loc:(local_binders_loc bl) bl c in
let ty, impls = interp_type_evars_impls env evdref ~impls c in
let ty = EConstr.Unsafe.to_constr ty in
(ty, impls)
let declare_assumptions idl is_coe k (c,ctx) pl imps impl_is_on nl =
let refs, status, _ =
List.fold_left (fun (refs,status,ctx) id ->
let ref',u',status' =
declare_assumption is_coe k (c,ctx) pl imps impl_is_on nl id in
(ref',u')::refs, status' && status, Univ.ContextSet.empty)
([],true,ctx) idl
in
List.rev refs, status
let do_assumptions_unbound_univs (_, poly, _ as kind) nl l =
let open Context.Named.Declaration in
let env = Global.env () in
let evdref = ref (Evd.from_env env) in
let l =
if poly then
(* Separate declarations so that A B : Type puts A and B in different levels. *)
List.fold_right (fun (is_coe,(idl,c)) acc ->
List.fold_right (fun id acc ->
(is_coe, ([id], c)) :: acc) idl acc)
l []
else l
in
(* We intepret all declarations in the same evar_map, i.e. as a telescope. *)
let _,l = List.fold_left_map (fun (env,ienv) (is_coe,(idl,c)) ->
let t,imps = interp_assumption evdref env ienv [] c in
let env =
push_named_context (List.map (fun (_,id) -> LocalAssum (id,t)) idl) env in
let ienv = List.fold_right (fun (_,id) ienv ->
let impls = compute_internalization_data env Variable t imps in
Id.Map.add id impls ienv) idl ienv in
((env,ienv),((is_coe,idl),t,imps)))
(env,empty_internalization_env) l
in
let evd = solve_remaining_evars all_and_fail_flags env !evdref Evd.empty in
(* The universe constraints come from the whole telescope. *)
let evd = Evd.nf_constraints evd in
let ctx = Evd.universe_context_set evd in
let nf_evar c = EConstr.Unsafe.to_constr (nf_evar evd (EConstr.of_constr c)) in
let l = List.map (on_pi2 nf_evar) l in
pi2 (List.fold_left (fun (subst,status,ctx) ((is_coe,idl),t,imps) ->
let t = replace_vars subst t in
let (refs,status') = declare_assumptions idl is_coe kind (t,ctx) [] imps false nl in
let subst' = List.map2
(fun (_,id) (c,u) -> (id,Universes.constr_of_global_univ (c,u)))
idl refs
in
(subst'@subst, status' && status,
(* The universe constraints are declared with the first declaration only. *)
Univ.ContextSet.empty)) ([],true,ctx) l)
let do_assumptions_bound_univs coe kind nl id pl c =
let env = Global.env () in
let ctx = Evd.make_evar_universe_context env pl in
let evdref = ref (Evd.from_ctx ctx) in
let ty, impls = interp_type_evars_impls env evdref c in
let nf, subst = Evarutil.e_nf_evars_and_universes evdref in
let ty = EConstr.Unsafe.to_constr ty in
let ty = nf ty in
let vars = Univops.universes_of_constr ty in
let evd = Evd.restrict_universe_context !evdref vars in
let pl, uctx = Evd.universe_context ?names:pl evd in
let uctx = Univ.ContextSet.of_context uctx in
let (_, _, st) = declare_assumption coe kind (ty, uctx) pl impls false nl id in
st
let do_assumptions kind nl l = match l with
| [coe, ([id, Some pl], c)] ->
let () = match kind with
| (Discharge, _, _) when Lib.sections_are_opened () ->
let loc = fst id in
let msg = Pp.str "Section variables cannot be polymorphic." in
user_err ?loc msg
| _ -> ()
in
do_assumptions_bound_univs coe kind nl id (Some pl) c
| _ ->
let map (coe, (idl, c)) =
let map (id, univs) = match univs with
| None -> id
| Some _ ->
let loc = fst id in
let msg =
Pp.str "Assumptions with bound universes can only be defined one at a time." in
user_err ?loc msg
in
(coe, (List.map map idl, c))
in
let l = List.map map l in
do_assumptions_unbound_univs kind nl l
(* 3a| Elimination schemes for mutual inductive definitions *)
(* 3b| Mutual inductive definitions *)
let push_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_rel (LocalAssum (Name id,t)) env)
env idl tl
type structured_one_inductive_expr = {
ind_name : Id.t;
ind_univs : lident list option;
ind_arity : constr_expr;
ind_lc : (Id.t * constr_expr) list
}
type structured_inductive_expr =
local_binder_expr list * structured_one_inductive_expr list
let minductive_message warn = function
| [] -> user_err Pp.(str "No inductive definition.")
| [x] -> (pr_id x ++ str " is defined" ++
if warn then str " as a non-primitive record" else mt())
| l -> hov 0 (prlist_with_sep pr_comma pr_id l ++
spc () ++ str "are defined")
let check_all_names_different indl =
let ind_names = List.map (fun ind -> ind.ind_name) indl in
let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in
let l = List.duplicates Id.equal ind_names in
let () = match l with
| [] -> ()
| t :: _ -> raise (InductiveError (SameNamesTypes t))
in
let l = List.duplicates Id.equal cstr_names in
let () = match l with
| [] -> ()
| c :: _ -> raise (InductiveError (SameNamesConstructors (List.hd l)))
in
let l = List.intersect Id.equal ind_names cstr_names in
match l with
| [] -> ()
| _ -> raise (InductiveError (SameNamesOverlap l))
let mk_mltype_data evdref env assums arity indname =
let is_ml_type = is_sort env !evdref (EConstr.of_constr arity) in
(is_ml_type,indname,assums)
let prepare_param = function
| LocalAssum (na,t) -> Name.get_id na, LocalAssumEntry t
| LocalDef (na,b,_) -> Name.get_id na, LocalDefEntry b
(** Make the arity conclusion flexible to avoid generating an upper bound universe now,
only if the universe does not appear anywhere else.
This is really a hack to stay compatible with the semantics of template polymorphic
inductives which are recognized when a "Type" appears at the end of the conlusion in
the source syntax. *)
let rec check_anonymous_type ind =
let open Glob_term in
match ind.CAst.v with
| GSort (GType []) -> true
| GProd ( _, _, _, e)
| GLetIn (_, _, _, e)
| GLambda (_, _, _, e)
| GApp (e, _)
| GCast (e, _) -> check_anonymous_type e
| _ -> false
let make_conclusion_flexible evdref ty poly =
if poly && isArity ty then
let _, concl = destArity ty in
match concl with
| Type u ->
(match Univ.universe_level u with
| Some u ->
evdref := Evd.make_flexible_variable !evdref ~algebraic:true u
| None -> ())
| _ -> ()
else ()
let is_impredicative env u =
u = Prop Null || (is_impredicative_set env && u = Prop Pos)
let interp_ind_arity env evdref ind =
let c = intern_gen IsType env ind.ind_arity in
let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in
let (evd,t) = understand_tcc env !evdref ~expected_type:IsType c in
evdref := evd;
let pseudo_poly = check_anonymous_type c in
let () = if not (Reductionops.is_arity env !evdref t) then
user_err ?loc:(constr_loc ind.ind_arity) (str "Not an arity")
in
let t = EConstr.Unsafe.to_constr t in
t, pseudo_poly, impls
let interp_cstrs evdref env impls mldata arity ind =
let cnames,ctyps = List.split ind.ind_lc in
(* Complete conclusions of constructor types if given in ML-style syntax *)
let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in
(* Interpret the constructor types *)
let ctyps'', cimpls = List.split (List.map (interp_type_evars_impls evdref env ~impls %> on_fst EConstr.Unsafe.to_constr) ctyps') in
(cnames, ctyps'', cimpls)
let sign_level env evd sign =
fst (List.fold_right
(fun d (lev,env) ->
match d with
| LocalDef _ -> lev, push_rel d env
| LocalAssum _ ->
let s = destSort (Reduction.whd_all env
(EConstr.Unsafe.to_constr (nf_evar evd (Retyping.get_type_of env evd (EConstr.of_constr (RelDecl.get_type d))))))
in
let u = univ_of_sort s in
(Univ.sup u lev, push_rel d env))
sign (Univ.type0m_univ,env))
let sup_list min = List.fold_left Univ.sup min
let extract_level env evd min tys =
let sorts = List.map (fun ty ->
let ctx, concl = Reduction.dest_prod_assum env ty in
sign_level env evd (LocalAssum (Anonymous, concl) :: ctx)) tys
in sup_list min sorts
let is_flexible_sort evd u =
match Univ.Universe.level u with
| Some l -> Evd.is_flexible_level evd l
| None -> false
let inductive_levels env evdref poly arities inds =
let destarities = List.map (fun x -> x, Reduction.dest_arity env x) arities in
let levels = List.map (fun (x,(ctx,a)) ->
if a = Prop Null then None
else Some (univ_of_sort a)) destarities
in
let cstrs_levels, min_levels, sizes =
CList.split3
(List.map2 (fun (_,tys,_) (arity,(ctx,du)) ->
let len = List.length tys in
let minlev = Sorts.univ_of_sort du in
let minlev =
if len > 1 && not (is_impredicative env du) then
Univ.sup minlev Univ.type0_univ
else minlev
in
let minlev =
(** Indices contribute. *)
if Indtypes.is_indices_matter () && List.length ctx > 0 then (
let ilev = sign_level env !evdref ctx in
Univ.sup ilev minlev)
else minlev
in
let clev = extract_level env !evdref minlev tys in
(clev, minlev, len)) inds destarities)
in
(* Take the transitive closure of the system of constructors *)
(* level constraints and remove the recursive dependencies *)
let levels' = Universes.solve_constraints_system (Array.of_list levels)
(Array.of_list cstrs_levels) (Array.of_list min_levels)
in
let evd, arities =
CList.fold_left3 (fun (evd, arities) cu (arity,(ctx,du)) len ->
if is_impredicative env du then
(** Any product is allowed here. *)
evd, arity :: arities
else (** If in a predicative sort, or asked to infer the type,
we take the max of:
- indices (if in indices-matter mode)
- constructors
- Type(1) if there is more than 1 constructor
*)
(** Constructors contribute. *)
let evd =
if Sorts.is_set du then
if not (Evd.check_leq evd cu Univ.type0_univ) then
raise (Indtypes.InductiveError Indtypes.LargeNonPropInductiveNotInType)
else evd
else evd
(* Evd.set_leq_sort env evd (Type cu) du *)
in
let evd =
if len >= 2 && Univ.is_type0m_univ cu then
(** "Polymorphic" type constraint and more than one constructor,
should not land in Prop. Add constraint only if it would
land in Prop directly (no informative arguments as well). *)
Evd.set_leq_sort env evd (Prop Pos) du
else evd
in
let duu = Sorts.univ_of_sort du in
let evd =
if not (Univ.is_small_univ duu) && Univ.Universe.equal cu duu then
if is_flexible_sort evd duu && not (Evd.check_leq evd Univ.type0_univ duu) then
Evd.set_eq_sort env evd (Prop Null) du
else evd
else Evd.set_eq_sort env evd (Type cu) du
in
(evd, arity :: arities))
(!evdref,[]) (Array.to_list levels') destarities sizes
in evdref := evd; List.rev arities
let check_named (loc, na) = match na with
| Name _ -> ()
| Anonymous ->
let msg = str "Parameters must be named." in
user_err ?loc msg
let check_param = function
| CLocalDef (na, _, _) -> check_named na
| CLocalAssum (nas, Default _, _) -> List.iter check_named nas
| CLocalAssum (nas, Generalized _, _) -> ()
| CLocalPattern _ -> assert false
let interp_mutual_inductive (paramsl,indl) notations cum poly prv finite =
check_all_names_different indl;
List.iter check_param paramsl;
let env0 = Global.env() in
let pl = (List.hd indl).ind_univs in
let ctx = Evd.make_evar_universe_context env0 pl in
let evdref = ref Evd.(from_ctx ctx) in
let impls, ((env_params, ctx_params), userimpls) =
interp_context_evars env0 evdref paramsl
in
let ctx_params = List.map (fun d -> map_rel_decl EConstr.Unsafe.to_constr d) ctx_params in
let indnames = List.map (fun ind -> ind.ind_name) indl in
(* Names of parameters as arguments of the inductive type (defs removed) *)
let assums = List.filter is_local_assum ctx_params in
let params = List.map (RelDecl.get_name %> Name.get_id) assums in
(* Interpret the arities *)
let arities = List.map (interp_ind_arity env_params evdref) indl in
let fullarities = List.map (fun (c, _, _) -> Term.it_mkProd_or_LetIn c ctx_params) arities in
let env_ar = push_types env0 indnames fullarities in
let env_ar_params = push_rel_context ctx_params env_ar in
(* Compute interpretation metadatas *)
let indimpls = List.map (fun (_, _, impls) -> userimpls @
lift_implicits (Context.Rel.nhyps ctx_params) impls) arities in
let arities = List.map pi1 arities and aritypoly = List.map pi2 arities in
let impls = compute_internalization_env env0 ~impls (Inductive (params,true)) indnames fullarities indimpls in
let implsforntn = compute_internalization_env env0 Variable indnames fullarities indimpls in
let mldatas = List.map2 (mk_mltype_data evdref env_params params) arities indnames in
let constructors =
Metasyntax.with_syntax_protection (fun () ->
(* Temporary declaration of notations and scopes *)
List.iter (Metasyntax.set_notation_for_interpretation implsforntn) notations;
(* Interpret the constructor types *)
List.map3 (interp_cstrs env_ar_params evdref impls) mldatas arities indl)
() in
(* Try further to solve evars, and instantiate them *)
let sigma = solve_remaining_evars all_and_fail_flags env_params !evdref Evd.empty in
evdref := sigma;
(* Compute renewed arities *)
let nf,_ = e_nf_evars_and_universes evdref in
let arities = List.map nf arities in
let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf cl,impsl)) constructors in
let _ = List.iter2 (fun ty poly -> make_conclusion_flexible evdref ty poly) arities aritypoly in
let arities = inductive_levels env_ar_params evdref poly arities constructors in
let nf',_ = e_nf_evars_and_universes evdref in
let nf x = nf' (nf x) in
let arities = List.map nf' arities in
let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf' cl,impsl)) constructors in
let ctx_params = Context.Rel.map nf ctx_params in
let evd = !evdref in
let pl, uctx = Evd.universe_context ?names:pl evd in
List.iter (fun c -> check_evars env_params Evd.empty evd (EConstr.of_constr c)) arities;
Context.Rel.iter (fun c -> check_evars env0 Evd.empty evd (EConstr.of_constr c)) ctx_params;
List.iter (fun (_,ctyps,_) ->
List.iter (fun c -> check_evars env_ar_params Evd.empty evd (EConstr.of_constr c)) ctyps)
constructors;
(* Build the inductive entries *)
let entries = List.map4 (fun ind arity template (cnames,ctypes,cimpls) -> {
mind_entry_typename = ind.ind_name;
mind_entry_arity = arity;
mind_entry_template = template;
mind_entry_consnames = cnames;
mind_entry_lc = ctypes
}) indl arities aritypoly constructors in
let impls =
let len = Context.Rel.nhyps ctx_params in
List.map2 (fun indimpls (_,_,cimpls) ->
indimpls, List.map (fun impls ->
userimpls @ (lift_implicits len impls)) cimpls) indimpls constructors
in
let univs =
if poly then
if cum then
Cumulative_ind_entry (Universes.univ_inf_ind_from_universe_context uctx)
else Polymorphic_ind_entry uctx
else
Monomorphic_ind_entry uctx
in
(* Build the mutual inductive entry *)
let mind_ent =
{ mind_entry_params = List.map prepare_param ctx_params;
mind_entry_record = None;
mind_entry_finite = finite;
mind_entry_inds = entries;
mind_entry_private = if prv then Some false else None;
mind_entry_universes = univs;
}
in
(if poly && cum then
Inductiveops.infer_inductive_subtyping env_ar evd mind_ent
else mind_ent), pl, impls
(* Very syntactical equality *)
let eq_local_binders bl1 bl2 =
List.equal local_binder_eq bl1 bl2
let extract_coercions indl =
let mkqid (_,((_,id),_)) = qualid_of_ident id in
let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in
List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))
let extract_params indl =
let paramsl = List.map (fun (_,params,_,_) -> params) indl in
match paramsl with
| [] -> anomaly (Pp.str "empty list of inductive types.")
| params::paramsl ->
if not (List.for_all (eq_local_binders params) paramsl) then user_err Pp.(str
"Parameters should be syntactically the same for each inductive type.");
params
let extract_inductive indl =
List.map (fun (((_,indname),pl),_,ar,lc) -> {
ind_name = indname; ind_univs = pl;
ind_arity = Option.cata (fun x -> x) (CAst.make @@ CSort (GType [])) ar;
ind_lc = List.map (fun (_,((_,id),t)) -> (id,t)) lc
}) indl
let extract_mutual_inductive_declaration_components indl =
let indl,ntnl = List.split indl in
let params = extract_params indl in
let coes = extract_coercions indl in
let indl = extract_inductive indl in
(params,indl), coes, List.flatten ntnl
let is_recursive mie =
let rec is_recursive_constructor lift typ =
match Term.kind_of_term typ with
| Prod (_,arg,rest) ->
not (EConstr.Vars.noccurn Evd.empty (** FIXME *) lift (EConstr.of_constr arg)) ||
is_recursive_constructor (lift+1) rest
| LetIn (na,b,t,rest) -> is_recursive_constructor (lift+1) rest
| _ -> false
in
match mie.mind_entry_inds with
| [ind] ->
let nparams = List.length mie.mind_entry_params in
List.exists (fun t -> is_recursive_constructor (nparams+1) t) ind.mind_entry_lc
| _ -> false
let declare_mutual_inductive_with_eliminations mie pl impls =
(* spiwack: raises an error if the structure is supposed to be non-recursive,
but isn't *)
begin match mie.mind_entry_finite with
| BiFinite when is_recursive mie ->
if Option.has_some mie.mind_entry_record then
user_err Pp.(str "Records declared with the keywords Record or Structure cannot be recursive. You can, however, define recursive records using the Inductive or CoInductive command.")
else
user_err Pp.(str ("Types declared with the keyword Variant cannot be recursive. Recursive types are defined with the Inductive and CoInductive command."))
| _ -> ()
end;
let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
let (_, kn), prim = declare_mind mie in
let mind = Global.mind_of_delta_kn kn in
List.iteri (fun i (indimpls, constrimpls) ->
let ind = (mind,i) in
let gr = IndRef ind in
maybe_declare_manual_implicits false gr indimpls;
Universes.register_universe_binders gr pl;
List.iteri
(fun j impls ->
maybe_declare_manual_implicits false
(ConstructRef (ind, succ j)) impls)
constrimpls)
impls;
let warn_prim = match mie.mind_entry_record with Some (Some _) -> not prim | _ -> false in
if_verbose Feedback.msg_info (minductive_message warn_prim names);
if mie.mind_entry_private == None
then declare_default_schemes mind;
mind
type one_inductive_impls =
Impargs.manual_explicitation list (* for inds *)*
Impargs.manual_explicitation list list (* for constrs *)
let do_mutual_inductive indl cum poly prv finite =
let indl,coes,ntns = extract_mutual_inductive_declaration_components indl in
(* Interpret the types *)
let mie,pl,impls = interp_mutual_inductive indl ntns cum poly prv finite in
(* Declare the mutual inductive block with its associated schemes *)
ignore (declare_mutual_inductive_with_eliminations mie pl impls);
(* Declare the possible notations of inductive types *)
List.iter Metasyntax.add_notation_interpretation ntns;
(* Declare the coercions *)
List.iter (fun qid -> Class.try_add_new_coercion (locate qid) ~local:false poly) coes;
(* If positivity is assumed declares itself as unsafe. *)
if Environ.deactivated_guard (Global.env ()) then Feedback.feedback Feedback.AddedAxiom else ()
(* 3c| Fixpoints and co-fixpoints *)
(* An (unoptimized) function that maps preorders to partial orders...
Input: a list of associations (x,[y1;...;yn]), all yi distincts
and different of x, meaning x<=y1, ..., x<=yn
Output: a list of associations (x,Inr [y1;...;yn]), collecting all
distincts yi greater than x, _or_, (x, Inl y) meaning that
x is in the same class as y (in which case, x occurs
nowhere else in the association map)
partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list
*)
let rec partial_order cmp = function
| [] -> []
| (x,xge)::rest ->
let rec browse res xge' = function
| [] ->
let res = List.map (function
| (z, Inr zge) when List.mem_f cmp x zge ->
(z, Inr (List.union cmp zge xge'))
| r -> r) res in
(x,Inr xge')::res
| y::xge ->
let rec link y =
try match List.assoc_f cmp y res with
| Inl z -> link z
| Inr yge ->
if List.mem_f cmp x yge then
let res = List.remove_assoc_f cmp y res in
let res = List.map (function
| (z, Inl t) ->
if cmp t y then (z, Inl x) else (z, Inl t)
| (z, Inr zge) ->
if List.mem_f cmp y zge then
(z, Inr (List.add_set cmp x (List.remove cmp y zge)))
else
(z, Inr zge)) res in
browse ((y,Inl x)::res) xge' (List.union cmp xge (List.remove cmp x yge))
else
browse res (List.add_set cmp y (List.union cmp xge' yge)) xge
with Not_found -> browse res (List.add_set cmp y xge') xge
in link y
in browse (partial_order cmp rest) [] xge
let non_full_mutual_message x xge y yge isfix rest =
let reason =
if Id.List.mem x yge then
pr_id y ++ str " depends on " ++ pr_id x ++ strbrk " but not conversely"
else if Id.List.mem y xge then
pr_id x ++ str " depends on " ++ pr_id y ++ strbrk " but not conversely"
else
pr_id y ++ str " and " ++ pr_id x ++ strbrk " are not mutually dependent" in
let e = if List.is_empty rest then reason else strbrk "e.g., " ++ reason in
let k = if isfix then "fixpoint" else "cofixpoint" in
let w =
if isfix
then strbrk "Well-foundedness check may fail unexpectedly." ++ fnl()
else mt () in
strbrk "Not a fully mutually defined " ++ str k ++ fnl () ++
str "(" ++ e ++ str ")." ++ fnl () ++ w
let warn_non_full_mutual =
CWarnings.create ~name:"non-full-mutual" ~category:"fixpoints"
(fun (x,xge,y,yge,isfix,rest) ->
non_full_mutual_message x xge y yge isfix rest)
let check_mutuality env evd isfix fixl =
let names = List.map fst fixl in
let preorder =
List.map (fun (id,def) ->
(id, List.filter (fun id' -> not (Id.equal id id') && occur_var env evd id' (EConstr.of_constr def)) names))
fixl in
let po = partial_order Id.equal preorder in
match List.filter (function (_,Inr _) -> true | _ -> false) po with
| (x,Inr xge)::(y,Inr yge)::rest ->
warn_non_full_mutual (x,xge,y,yge,isfix,rest)
| _ -> ()
type structured_fixpoint_expr = {
fix_name : Id.t;
fix_univs : lident list option;
fix_annot : Id.t Loc.located option;
fix_binders : local_binder_expr list;
fix_body : constr_expr option;
fix_type : constr_expr
}
let interp_fix_context env evdref isfix fix =
let before, after = if isfix then split_at_annot fix.fix_binders fix.fix_annot else [], fix.fix_binders in
let impl_env, ((env', ctx), imps) = interp_context_evars env evdref before in
let impl_env', ((env'', ctx'), imps') = interp_context_evars ~impl_env ~shift:(Context.Rel.nhyps ctx) env' evdref after in
let annot = Option.map (fun _ -> List.length (assums_of_rel_context ctx)) fix.fix_annot in
((env'', ctx' @ ctx), (impl_env',imps @ imps'), annot)
let interp_fix_ccl evdref impls (env,_) fix =
let (c, impl) = interp_type_evars_impls ~impls env evdref fix.fix_type in
(c, impl)
let interp_fix_body env_rec evdref impls (_,ctx) fix ccl =
let open EConstr in
Option.map (fun body ->
let env = push_rel_context ctx env_rec in
let body = interp_casted_constr_evars env evdref ~impls body ccl in
it_mkLambda_or_LetIn body ctx) fix.fix_body
let build_fix_type (_,ctx) ccl = EConstr.it_mkProd_or_LetIn ccl ctx
let prepare_recursive_declaration fixnames fixtypes fixdefs =
let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
let names = List.map (fun id -> Name id) fixnames in
(Array.of_list names, Array.of_list fixtypes, Array.of_list defs)
(* Jump over let-bindings. *)
let compute_possible_guardness_evidences (ctx,_,recindex) =
(* A recursive index is characterized by the number of lambdas to
skip before finding the relevant inductive argument *)
match recindex with
| Some i -> [i]
| None ->
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem to worth the effort (except for huge mutual
fixpoints ?) *)
List.interval 0 (Context.Rel.nhyps ctx - 1)
type recursive_preentry =
Id.t list * constr option list * types list
(* Wellfounded definition *)
open Coqlib
let contrib_name = "Program"
let subtac_dir = [contrib_name]
let fixsub_module = subtac_dir @ ["Wf"]
let tactics_module = subtac_dir @ ["Tactics"]
let init_reference dir s () = Coqlib.coq_reference "Command" dir s
let init_constant dir s evdref =
let (sigma, c) = Evarutil.new_global !evdref (Coqlib.coq_reference "Command" dir s)
in evdref := sigma; c
let make_ref l s = init_reference l s
let fix_proto = init_constant tactics_module "fix_proto"
let fix_sub_ref = make_ref fixsub_module "Fix_sub"
let measure_on_R_ref = make_ref fixsub_module "MR"
let well_founded = init_constant ["Init"; "Wf"] "well_founded"
let mkSubset evdref name typ prop =
let open EConstr in
mkApp (Evarutil.e_new_global evdref (delayed_force build_sigma).typ,
[| typ; mkLambda (name, typ, prop) |])
let sigT = Lazy.from_fun build_sigma_type
let make_qref s = Qualid (Loc.tag @@ qualid_of_string s)
let lt_ref = make_qref "Init.Peano.lt"
let rec telescope evdref l =
let open EConstr in
let open Vars in
match l with
| [] -> assert false
| [LocalAssum (n, t)] -> t, [LocalDef (n, mkRel 1, t)], mkRel 1
| LocalAssum (n, t) :: tl ->
let ty, tys, (k, constr) =
List.fold_left
(fun (ty, tys, (k, constr)) decl ->
let t = RelDecl.get_type decl in
let pred = mkLambda (RelDecl.get_name decl, t, ty) in
let ty = Evarutil.e_new_global evdref (Lazy.force sigT).typ in
let intro = Evarutil.e_new_global evdref (Lazy.force sigT).intro in
let sigty = mkApp (ty, [|t; pred|]) in
let intro = mkApp (intro, [|lift k t; lift k pred; mkRel k; constr|]) in
(sigty, pred :: tys, (succ k, intro)))
(t, [], (2, mkRel 1)) tl
in
let (last, subst) = List.fold_right2
(fun pred decl (prev, subst) ->
let t = RelDecl.get_type decl in
let p1 = Evarutil.e_new_global evdref (Lazy.force sigT).proj1 in
let p2 = Evarutil.e_new_global evdref (Lazy.force sigT).proj2 in
let proj1 = applist (p1, [t; pred; prev]) in
let proj2 = applist (p2, [t; pred; prev]) in
(lift 1 proj2, LocalDef (get_name decl, proj1, t) :: subst))
(List.rev tys) tl (mkRel 1, [])
in ty, (LocalDef (n, last, t) :: subst), constr
| LocalDef (n, b, t) :: tl -> let ty, subst, term = telescope evdref tl in
ty, (LocalDef (n, b, t) :: subst), lift 1 term
let nf_evar_context sigma ctx =
List.map (map_constr (fun c -> Evarutil.nf_evar sigma c)) ctx
let build_wellfounded (recname,pl,n,bl,arityc,body) poly r measure notation =
let open EConstr in
let open Vars in
let lift_rel_context n l = Termops.map_rel_context_with_binders (liftn n) l in
Coqlib.check_required_library ["Coq";"Program";"Wf"];
let env = Global.env() in
let ctx = Evd.make_evar_universe_context env pl in
let evdref = ref (Evd.from_ctx ctx) in
let _, ((env', binders_rel), impls) = interp_context_evars env evdref bl in
let len = List.length binders_rel in
let top_env = push_rel_context binders_rel env in
let top_arity = interp_type_evars top_env evdref arityc in
let full_arity = it_mkProd_or_LetIn top_arity binders_rel in
let argtyp, letbinders, make = telescope evdref binders_rel in
let argname = Id.of_string "recarg" in
let arg = LocalAssum (Name argname, argtyp) in
let binders = letbinders @ [arg] in
let binders_env = push_rel_context binders_rel env in
let rel, _ = interp_constr_evars_impls env evdref r in
let relty = Typing.unsafe_type_of env !evdref rel in
let relargty =
let error () =
user_err ?loc:(constr_loc r)
~hdr:"Command.build_wellfounded"
(Printer.pr_econstr_env env !evdref rel ++ str " is not an homogeneous binary relation.")
in
try
let ctx, ar = Reductionops.splay_prod_n env !evdref 2 relty in
match ctx, EConstr.kind !evdref ar with
| [LocalAssum (_,t); LocalAssum (_,u)], Sort s
when Sorts.is_prop (ESorts.kind !evdref s) && Reductionops.is_conv env !evdref t u -> t
| _, _ -> error ()
with e when CErrors.noncritical e -> error ()
in
let relargty = EConstr.Unsafe.to_constr relargty in
let measure = interp_casted_constr_evars binders_env evdref measure relargty in
let wf_rel, wf_rel_fun, measure_fn =
let measure_body, measure =
it_mkLambda_or_LetIn measure letbinders,
it_mkLambda_or_LetIn measure binders
in
let comb = Evarutil.e_new_global evdref (delayed_force measure_on_R_ref) in
let relargty = EConstr.of_constr relargty in
let wf_rel = mkApp (comb, [| argtyp; relargty; rel; measure |]) in
let wf_rel_fun x y =
mkApp (rel, [| subst1 x measure_body;
subst1 y measure_body |])
in wf_rel, wf_rel_fun, measure
in
let wf_proof = mkApp (well_founded evdref, [| argtyp ; wf_rel |]) in
let argid' = Id.of_string (Id.to_string argname ^ "'") in
let wfarg len = LocalAssum (Name argid',
mkSubset evdref (Name argid') argtyp
(wf_rel_fun (mkRel 1) (mkRel (len + 1))))
in
let intern_bl = wfarg 1 :: [arg] in
let _intern_env = push_rel_context intern_bl env in
let proj = Evarutil.e_new_global evdref (delayed_force build_sigma).Coqlib.proj1 in
let wfargpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel 3)) in
let projection = (* in wfarg :: arg :: before *)
mkApp (proj, [| argtyp ; wfargpred ; mkRel 1 |])
in
let top_arity_let = it_mkLambda_or_LetIn top_arity letbinders in
let intern_arity = substl [projection] top_arity_let in
(* substitute the projection of wfarg for something,
now intern_arity is in wfarg :: arg *)
let intern_fun_arity_prod = it_mkProd_or_LetIn intern_arity [wfarg 1] in
let intern_fun_binder = LocalAssum (Name (add_suffix recname "'"), intern_fun_arity_prod) in
let curry_fun =
let wfpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel (2 * len + 4))) in
let intro = Evarutil.e_new_global evdref (delayed_force build_sigma).Coqlib.intro in
let arg = mkApp (intro, [| argtyp; wfpred; lift 1 make; mkRel 1 |]) in
let app = mkApp (mkRel (2 * len + 2 (* recproof + orig binders + current binders *)), [| arg |]) in
let rcurry = mkApp (rel, [| measure; lift len measure |]) in
let lam = LocalAssum (Name (Id.of_string "recproof"), rcurry) in
let body = it_mkLambda_or_LetIn app (lam :: binders_rel) in
let ty = it_mkProd_or_LetIn (lift 1 top_arity) (lam :: binders_rel) in
LocalDef (Name recname, body, ty)
in
let fun_bl = intern_fun_binder :: [arg] in
let lift_lets = lift_rel_context 1 letbinders in
let intern_body =
let ctx = LocalAssum (Name recname, get_type curry_fun) :: binders_rel in
let (r, l, impls, scopes) =
Constrintern.compute_internalization_data env
Constrintern.Recursive (EConstr.Unsafe.to_constr full_arity) impls
in
let newimpls = Id.Map.singleton recname
(r, l, impls @ [(Some (Id.of_string "recproof", Impargs.Manual, (true, false)))],
scopes @ [None]) in
interp_casted_constr_evars (push_rel_context ctx env) evdref
~impls:newimpls body (EConstr.Unsafe.to_constr (lift 1 top_arity))
in
let intern_body_lam = it_mkLambda_or_LetIn intern_body (curry_fun :: lift_lets @ fun_bl) in
let prop = mkLambda (Name argname, argtyp, top_arity_let) in
let def =
mkApp (Evarutil.e_new_global evdref (delayed_force fix_sub_ref),
[| argtyp ; wf_rel ;
Evarutil.e_new_evar env evdref
~src:(Loc.tag @@ Evar_kinds.QuestionMark (Evar_kinds.Define false,Anonymous)) wf_proof;
prop |])
in
let def = Typing.e_solve_evars env evdref def in
let _ = evdref := Evarutil.nf_evar_map !evdref in
let def = mkApp (def, [|intern_body_lam|]) in
let binders_rel = nf_evar_context !evdref binders_rel in
let binders = nf_evar_context !evdref binders in
let top_arity = Evarutil.nf_evar !evdref top_arity in
let hook, recname, typ =
if List.length binders_rel > 1 then
let name = add_suffix recname "_func" in
let hook l gr _ =
let body = it_mkLambda_or_LetIn (mkApp (Evarutil.e_new_global evdref gr, [|make|])) binders_rel in
let ty = it_mkProd_or_LetIn top_arity binders_rel in
let ty = EConstr.Unsafe.to_constr ty in
let pl, univs = Evd.universe_context ?names:pl !evdref in
(*FIXME poly? *)
let ce = definition_entry ~poly ~types:ty ~univs (EConstr.to_constr !evdref body) in
(** FIXME: include locality *)
let c = Declare.declare_constant recname (DefinitionEntry ce, IsDefinition Definition) in
let gr = ConstRef c in
if Impargs.is_implicit_args () || not (List.is_empty impls) then
Impargs.declare_manual_implicits false gr [impls]
in
let typ = it_mkProd_or_LetIn top_arity binders in
hook, name, typ
else
let typ = it_mkProd_or_LetIn top_arity binders_rel in
let hook l gr _ =
if Impargs.is_implicit_args () || not (List.is_empty impls) then
Impargs.declare_manual_implicits false gr [impls]
in hook, recname, typ
in
let hook = Lemmas.mk_hook hook in
let fullcoqc = EConstr.to_constr !evdref def in
let fullctyp = EConstr.to_constr !evdref typ in
Obligations.check_evars env !evdref;
let evars, _, evars_def, evars_typ =
Obligations.eterm_obligations env recname !evdref 0 fullcoqc fullctyp
in
let ctx = Evd.evar_universe_context !evdref in
ignore(Obligations.add_definition recname ~term:evars_def ?pl
evars_typ ctx evars ~hook)
let interp_recursive isfix fixl notations =
let open Context.Named.Declaration in
let open EConstr in
let env = Global.env() in
let fixnames = List.map (fun fix -> fix.fix_name) fixl in
(* Interp arities allowing for unresolved types *)
let all_universes =
List.fold_right (fun sfe acc ->
match sfe.fix_univs , acc with
| None , acc -> acc
| x , None -> x
| Some ls , Some us ->
if not (CList.for_all2eq (fun x y -> Id.equal (snd x) (snd y)) ls us) then
user_err Pp.(str "(co)-recursive definitions should all have the same universe binders");
Some us) fixl None in
let ctx = Evd.make_evar_universe_context env all_universes in
let evdref = ref (Evd.from_ctx ctx) in
let fixctxs, fiximppairs, fixannots =
List.split3 (List.map (interp_fix_context env evdref isfix) fixl) in
let fixctximpenvs, fixctximps = List.split fiximppairs in
let fixccls,fixcclimps = List.split (List.map3 (interp_fix_ccl evdref) fixctximpenvs fixctxs fixl) in
let fixtypes = List.map2 build_fix_type fixctxs fixccls in
let fixtypes = List.map (fun c -> nf_evar !evdref c) fixtypes in
let fiximps = List.map3
(fun ctximps cclimps (_,ctx) -> ctximps@(Impargs.lift_implicits (Context.Rel.nhyps ctx) cclimps))
fixctximps fixcclimps fixctxs in
let rec_sign =
List.fold_left2
(fun env' id t ->
if Flags.is_program_mode () then
let sort = Evarutil.evd_comb1 (Typing.type_of ~refresh:true env) evdref t in
let fixprot =
try
let app = mkApp (fix_proto evdref, [|sort; t|]) in
Typing.e_solve_evars env evdref app
with e when CErrors.noncritical e -> t
in
LocalAssum (id,fixprot) :: env'
else LocalAssum (id,t) :: env')
[] fixnames fixtypes
in
let env_rec = push_named_context rec_sign env in
(* Get interpretation metadatas *)
let fixtypes = List.map EConstr.Unsafe.to_constr fixtypes in
let fixccls = List.map EConstr.Unsafe.to_constr fixccls in
let impls = compute_internalization_env env Recursive fixnames fixtypes fiximps in
(* Interp bodies with rollback because temp use of notations/implicit *)
let fixdefs =
Metasyntax.with_syntax_protection (fun () ->
List.iter (Metasyntax.set_notation_for_interpretation impls) notations;
List.map4
(fun fixctximpenv -> interp_fix_body env_rec evdref (Id.Map.fold Id.Map.add fixctximpenv impls))
fixctximpenvs fixctxs fixl fixccls)
() in
(* Instantiate evars and check all are resolved *)
let evd = solve_unif_constraints_with_heuristics env_rec !evdref in
let evd, nf = nf_evars_and_universes evd in
let fixdefs = List.map (fun c -> Option.map EConstr.Unsafe.to_constr c) fixdefs in
let fixdefs = List.map (Option.map nf) fixdefs in
let fixtypes = List.map nf fixtypes in
let fixctxs = List.map (fun (_,ctx) -> ctx) fixctxs in
(* Build the fix declaration block *)
(env,rec_sign,all_universes,evd), (fixnames,fixdefs,fixtypes), List.combine3 fixctxs fiximps fixannots
let check_recursive isfix env evd (fixnames,fixdefs,_) =
check_evars_are_solved env evd Evd.empty;
if List.for_all Option.has_some fixdefs then begin
let fixdefs = List.map Option.get fixdefs in
check_mutuality env evd isfix (List.combine fixnames fixdefs)
end
let interp_fixpoint l ntns =
let (env,_,pl,evd),fix,info = interp_recursive true l ntns in
check_recursive true env evd fix;
(fix,pl,Evd.evar_universe_context evd,info)
let interp_cofixpoint l ntns =
let (env,_,pl,evd),fix,info = interp_recursive false l ntns in
check_recursive false env evd fix;
(fix,pl,Evd.evar_universe_context evd,info)
let declare_fixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) indexes ntns =
if List.exists Option.is_empty fixdefs then
(* Some bodies to define by proof *)
let thms =
List.map3 (fun id t (ctx,imps,_) -> ((id,pl),(t,(List.map RelDecl.get_name ctx,imps))))
fixnames fixtypes fiximps in
let init_tac =
Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC)
fixdefs) in
let evd = Evd.from_ctx ctx in
Lemmas.start_proof_with_initialization (Global,poly,DefinitionBody Fixpoint)
evd (Some(false,indexes,init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ()))
else begin
(* We shortcut the proof process *)
let fixdefs = List.map Option.get fixdefs in
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let env = Global.env() in
let indexes = search_guard env indexes fixdecls in
let fiximps = List.map (fun (n,r,p) -> r) fiximps in
let vars = Univops.universes_of_constr (mkFix ((indexes,0),fixdecls)) in
let fixdecls =
List.map_i (fun i _ -> mkFix ((indexes,i),fixdecls)) 0 fixnames in
let evd = Evd.from_ctx ctx in
let evd = Evd.restrict_universe_context evd vars in
let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in
let pl, ctx = Evd.universe_context ?names:pl evd in
ignore (List.map4 (DeclareDef.declare_fix (local, poly, Fixpoint) pl ctx)
fixnames fixdecls fixtypes fiximps);
(* Declare the recursive definitions *)
fixpoint_message (Some indexes) fixnames;
end;
(* Declare notations *)
List.iter Metasyntax.add_notation_interpretation ntns
let declare_cofixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) ntns =
if List.exists Option.is_empty fixdefs then
(* Some bodies to define by proof *)
let thms =
List.map3 (fun id t (ctx,imps,_) -> ((id,pl),(t,(List.map RelDecl.get_name ctx,imps))))
fixnames fixtypes fiximps in
let init_tac =
Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC)
fixdefs) in
let evd = Evd.from_ctx ctx in
Lemmas.start_proof_with_initialization (Global,poly, DefinitionBody CoFixpoint)
evd (Some(true,[],init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ()))
else begin
(* We shortcut the proof process *)
let fixdefs = List.map Option.get fixdefs in
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let fixdecls = List.map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 fixnames in
let vars = Univops.universes_of_constr (List.hd fixdecls) in
let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in
let fiximps = List.map (fun (len,imps,idx) -> imps) fiximps in
let evd = Evd.from_ctx ctx in
let evd = Evd.restrict_universe_context evd vars in
let pl, ctx = Evd.universe_context ?names:pl evd in
ignore (List.map4 (DeclareDef.declare_fix (local, poly, CoFixpoint) pl ctx)
fixnames fixdecls fixtypes fiximps);
(* Declare the recursive definitions *)
cofixpoint_message fixnames
end;
(* Declare notations *)
List.iter Metasyntax.add_notation_interpretation ntns
let extract_decreasing_argument limit = function
| (na,CStructRec) -> na
| (na,_) when not limit -> na
| _ -> user_err Pp.(str
"Only structural decreasing is supported for a non-Program Fixpoint")
let extract_fixpoint_components limit l =
let fixl, ntnl = List.split l in
let fixl = List.map (fun (((_,id),pl),ann,bl,typ,def) ->
let ann = extract_decreasing_argument limit ann in
{fix_name = id; fix_annot = ann; fix_univs = pl;
fix_binders = bl; fix_body = def; fix_type = typ}) fixl in
fixl, List.flatten ntnl
let extract_cofixpoint_components l =
let fixl, ntnl = List.split l in
List.map (fun (((_,id),pl),bl,typ,def) ->
{fix_name = id; fix_annot = None; fix_univs = pl;
fix_binders = bl; fix_body = def; fix_type = typ}) fixl,
List.flatten ntnl
let out_def = function
| Some def -> def
| None -> user_err Pp.(str "Program Fixpoint needs defined bodies.")
let collect_evars_of_term evd c ty =
let evars = Evar.Set.union (Evd.evars_of_term c) (Evd.evars_of_term ty) in
Evar.Set.fold (fun ev acc -> Evd.add acc ev (Evd.find_undefined evd ev))
evars (Evd.from_ctx (Evd.evar_universe_context evd))
let do_program_recursive local p fixkind fixl ntns =
let isfix = fixkind != Obligations.IsCoFixpoint in
let (env, rec_sign, pl, evd), fix, info =
interp_recursive isfix fixl ntns
in
(* Program-specific code *)
(* Get the interesting evars, those that were not instanciated *)
let evd = Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~fail:true env evd in
(* Solve remaining evars *)
let evd = nf_evar_map_undefined evd in
let collect_evars id def typ imps =
(* Generalize by the recursive prototypes *)
let def =
EConstr.to_constr evd (Termops.it_mkNamedLambda_or_LetIn (EConstr.of_constr def) rec_sign)
and typ =
EConstr.to_constr evd (Termops.it_mkNamedProd_or_LetIn (EConstr.of_constr typ) rec_sign)
in
let evm = collect_evars_of_term evd def typ in
let evars, _, def, typ =
Obligations.eterm_obligations env id evm
(List.length rec_sign) def typ
in (id, def, typ, imps, evars)
in
let (fixnames,fixdefs,fixtypes) = fix in
let fiximps = List.map pi2 info in
let fixdefs = List.map out_def fixdefs in
let defs = List.map4 collect_evars fixnames fixdefs fixtypes fiximps in
let () = if isfix then begin
let possible_indexes = List.map compute_possible_guardness_evidences info in
let fixdecls = Array.of_list (List.map (fun x -> Name x) fixnames),
Array.of_list fixtypes,
Array.of_list (List.map (subst_vars (List.rev fixnames)) fixdefs)
in
let indexes =
Pretyping.search_guard (Global.env ()) possible_indexes fixdecls in
List.iteri (fun i _ ->
Inductive.check_fix env
((indexes,i),fixdecls))
fixl
end in
let ctx = Evd.evar_universe_context evd in
let kind = match fixkind with
| Obligations.IsFixpoint _ -> (local, p, Fixpoint)
| Obligations.IsCoFixpoint -> (local, p, CoFixpoint)
in
Obligations.add_mutual_definitions defs ~kind ?pl ctx ntns fixkind
let do_program_fixpoint local poly l =
let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in
match g, l with
| [(n, CWfRec r)], [((((_,id),pl),_,bl,typ,def),ntn)] ->
let recarg =
match n with
| Some n -> mkIdentC (snd n)
| None ->
user_err ~hdr:"do_program_fixpoint"
(str "Recursive argument required for well-founded fixpoints")
in build_wellfounded (id, pl, n, bl, typ, out_def def) poly r recarg ntn
| [(n, CMeasureRec (m, r))], [((((_,id),pl),_,bl,typ,def),ntn)] ->
build_wellfounded (id, pl, n, bl, typ, out_def def) poly
(Option.default (CAst.make @@ CRef (lt_ref,None)) r) m ntn
| _, _ when List.for_all (fun (n, ro) -> ro == CStructRec) g ->
let fixl,ntns = extract_fixpoint_components true l in
let fixkind = Obligations.IsFixpoint g in
do_program_recursive local poly fixkind fixl ntns
| _, _ ->
user_err ~hdr:"do_program_fixpoint"
(str "Well-founded fixpoints not allowed in mutually recursive blocks")
let check_safe () =
let open Declarations in
let flags = Environ.typing_flags (Global.env ()) in
flags.check_universes && flags.check_guarded
let do_fixpoint local poly l =
if Flags.is_program_mode () then do_program_fixpoint local poly l
else
let fixl, ntns = extract_fixpoint_components true l in
let (_, _, _, info as fix) = interp_fixpoint fixl ntns in
let possible_indexes =
List.map compute_possible_guardness_evidences info in
declare_fixpoint local poly fix possible_indexes ntns;
if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else ()
let do_cofixpoint local poly l =
let fixl,ntns = extract_cofixpoint_components l in
if Flags.is_program_mode () then
do_program_recursive local poly Obligations.IsCoFixpoint fixl ntns
else
let cofix = interp_cofixpoint fixl ntns in
declare_cofixpoint local poly cofix ntns;
if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else ()
|