1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
open Pp
open CErrors
open Util
open Constr
open Vars
open Termops
open Declare
open Names
open Constrexpr
open Constrexpr_ops
open Constrintern
open Decl_kinds
open Pretyping
open Evarutil
open Evarconv
open Misctypes
open Vernacexpr
module RelDecl = Context.Rel.Declaration
(* 3c| Fixpoints and co-fixpoints *)
(* An (unoptimized) function that maps preorders to partial orders...
Input: a list of associations (x,[y1;...;yn]), all yi distincts
and different of x, meaning x<=y1, ..., x<=yn
Output: a list of associations (x,Inr [y1;...;yn]), collecting all
distincts yi greater than x, _or_, (x, Inl y) meaning that
x is in the same class as y (in which case, x occurs
nowhere else in the association map)
partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list
*)
let rec partial_order cmp = function
| [] -> []
| (x,xge)::rest ->
let rec browse res xge' = function
| [] ->
let res = List.map (function
| (z, Inr zge) when List.mem_f cmp x zge ->
(z, Inr (List.union cmp zge xge'))
| r -> r) res in
(x,Inr xge')::res
| y::xge ->
let rec link y =
try match List.assoc_f cmp y res with
| Inl z -> link z
| Inr yge ->
if List.mem_f cmp x yge then
let res = List.remove_assoc_f cmp y res in
let res = List.map (function
| (z, Inl t) ->
if cmp t y then (z, Inl x) else (z, Inl t)
| (z, Inr zge) ->
if List.mem_f cmp y zge then
(z, Inr (List.add_set cmp x (List.remove cmp y zge)))
else
(z, Inr zge)) res in
browse ((y,Inl x)::res) xge' (List.union cmp xge (List.remove cmp x yge))
else
browse res (List.add_set cmp y (List.union cmp xge' yge)) xge
with Not_found -> browse res (List.add_set cmp y xge') xge
in link y
in browse (partial_order cmp rest) [] xge
let non_full_mutual_message x xge y yge isfix rest =
let reason =
if Id.List.mem x yge then
Id.print y ++ str " depends on " ++ Id.print x ++ strbrk " but not conversely"
else if Id.List.mem y xge then
Id.print x ++ str " depends on " ++ Id.print y ++ strbrk " but not conversely"
else
Id.print y ++ str " and " ++ Id.print x ++ strbrk " are not mutually dependent" in
let e = if List.is_empty rest then reason else strbrk "e.g., " ++ reason in
let k = if isfix then "fixpoint" else "cofixpoint" in
let w =
if isfix
then strbrk "Well-foundedness check may fail unexpectedly." ++ fnl()
else mt () in
strbrk "Not a fully mutually defined " ++ str k ++ fnl () ++
str "(" ++ e ++ str ")." ++ fnl () ++ w
let warn_non_full_mutual =
CWarnings.create ~name:"non-full-mutual" ~category:"fixpoints"
(fun (x,xge,y,yge,isfix,rest) ->
non_full_mutual_message x xge y yge isfix rest)
let check_mutuality env evd isfix fixl =
let names = List.map fst fixl in
let preorder =
List.map (fun (id,def) ->
(id, List.filter (fun id' -> not (Id.equal id id') && occur_var env evd id' (EConstr.of_constr def)) names))
fixl in
let po = partial_order Id.equal preorder in
match List.filter (function (_,Inr _) -> true | _ -> false) po with
| (x,Inr xge)::(y,Inr yge)::rest ->
warn_non_full_mutual (x,xge,y,yge,isfix,rest)
| _ -> ()
type structured_fixpoint_expr = {
fix_name : Id.t;
fix_univs : universe_decl_expr option;
fix_annot : lident option;
fix_binders : local_binder_expr list;
fix_body : constr_expr option;
fix_type : constr_expr
}
let interp_fix_context ~cofix env sigma fix =
let before, after = if not cofix then split_at_annot fix.fix_binders fix.fix_annot else [], fix.fix_binders in
let sigma, (impl_env, ((env', ctx), imps)) = interp_context_evars env sigma before in
let sigma, (impl_env', ((env'', ctx'), imps')) = interp_context_evars ~impl_env ~shift:(Context.Rel.nhyps ctx) env' sigma after in
let annot = Option.map (fun _ -> List.length (assums_of_rel_context ctx)) fix.fix_annot in
sigma, ((env'', ctx' @ ctx), (impl_env',imps @ imps'), annot)
let interp_fix_ccl sigma impls (env,_) fix =
interp_type_evars_impls ~impls env sigma fix.fix_type
let interp_fix_body env_rec sigma impls (_,ctx) fix ccl =
let open EConstr in
Option.cata (fun body ->
let env = push_rel_context ctx env_rec in
let sigma, body = interp_casted_constr_evars env sigma ~impls body ccl in
sigma, Some (it_mkLambda_or_LetIn body ctx)) (sigma, None) fix.fix_body
let build_fix_type (_,ctx) ccl = EConstr.it_mkProd_or_LetIn ccl ctx
let prepare_recursive_declaration fixnames fixtypes fixdefs =
let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
let names = List.map (fun id -> Name id) fixnames in
(Array.of_list names, Array.of_list fixtypes, Array.of_list defs)
(* Jump over let-bindings. *)
let compute_possible_guardness_evidences (ctx,_,recindex) =
(* A recursive index is characterized by the number of lambdas to
skip before finding the relevant inductive argument *)
match recindex with
| Some i -> [i]
| None ->
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem to worth the effort (except for huge mutual
fixpoints ?) *)
List.interval 0 (Context.Rel.nhyps ctx - 1)
type recursive_preentry =
Id.t list * constr option list * types list
(* Wellfounded definition *)
let contrib_name = "Program"
let subtac_dir = [contrib_name]
let tactics_module = subtac_dir @ ["Tactics"]
let init_constant dir s sigma =
Evarutil.new_global sigma (Coqlib.coq_reference "Command" dir s)
let fix_proto = init_constant tactics_module "fix_proto"
let interp_recursive ~program_mode ~cofix fixl notations =
let open Context.Named.Declaration in
let open EConstr in
let env = Global.env() in
let fixnames = List.map (fun fix -> fix.fix_name) fixl in
(* Interp arities allowing for unresolved types *)
let all_universes =
List.fold_right (fun sfe acc ->
match sfe.fix_univs , acc with
| None , acc -> acc
| x , None -> x
| Some ls , Some us ->
let lsu = ls.univdecl_instance and usu = us.univdecl_instance in
if not (CList.for_all2eq (fun x y -> Id.equal x.CAst.v y.CAst.v) lsu usu) then
user_err Pp.(str "(co)-recursive definitions should all have the same universe binders");
Some us) fixl None in
let sigma, decl = Univdecls.interp_univ_decl_opt env all_universes in
let sigma, (fixctxs, fiximppairs, fixannots) =
on_snd List.split3 @@
List.fold_left_map (fun sigma -> interp_fix_context env sigma ~cofix) sigma fixl in
let fixctximpenvs, fixctximps = List.split fiximppairs in
let sigma, (fixccls,fixcclimps) =
on_snd List.split @@
List.fold_left3_map interp_fix_ccl sigma fixctximpenvs fixctxs fixl in
let fixtypes = List.map2 build_fix_type fixctxs fixccls in
let fixtypes = List.map (fun c -> nf_evar sigma c) fixtypes in
let fiximps = List.map3
(fun ctximps cclimps (_,ctx) -> ctximps@(Impargs.lift_implicits (Context.Rel.nhyps ctx) cclimps))
fixctximps fixcclimps fixctxs in
let sigma, rec_sign =
List.fold_left2
(fun (sigma, env') id t ->
if program_mode then
let sigma, sort = Typing.type_of ~refresh:true env sigma t in
let sigma, fixprot =
try
let sigma, h_term = fix_proto sigma in
let app = mkApp (h_term, [|sort; t|]) in
let _evd = ref sigma in
let res = Typing.e_solve_evars env _evd app in
!_evd, res
with e when CErrors.noncritical e -> sigma, t
in
sigma, LocalAssum (id,fixprot) :: env'
else sigma, LocalAssum (id,t) :: env')
(sigma,[]) fixnames fixtypes
in
let env_rec = push_named_context rec_sign env in
(* Get interpretation metadatas *)
let fixtypes = List.map EConstr.Unsafe.to_constr fixtypes in
let impls = compute_internalization_env env Recursive fixnames fixtypes fiximps in
(* Interp bodies with rollback because temp use of notations/implicit *)
let sigma, fixdefs =
Metasyntax.with_syntax_protection (fun () ->
List.iter (Metasyntax.set_notation_for_interpretation env_rec impls) notations;
List.fold_left4_map
(fun sigma fixctximpenv -> interp_fix_body env_rec sigma (Id.Map.fold Id.Map.add fixctximpenv impls))
sigma fixctximpenvs fixctxs fixl fixccls)
() in
(* Instantiate evars and check all are resolved *)
let sigma = solve_unif_constraints_with_heuristics env_rec sigma in
let sigma, nf = nf_evars_and_universes sigma in
let fixdefs = List.map (fun c -> Option.map EConstr.Unsafe.to_constr c) fixdefs in
let fixdefs = List.map (Option.map nf) fixdefs in
let fixtypes = List.map nf fixtypes in
let fixctxs = List.map (fun (_,ctx) -> ctx) fixctxs in
(* Build the fix declaration block *)
(env,rec_sign,decl,sigma), (fixnames,fixdefs,fixtypes), List.combine3 fixctxs fiximps fixannots
let check_recursive isfix env evd (fixnames,fixdefs,_) =
check_evars_are_solved env evd Evd.empty;
if List.for_all Option.has_some fixdefs then begin
let fixdefs = List.map Option.get fixdefs in
check_mutuality env evd isfix (List.combine fixnames fixdefs)
end
let interp_fixpoint ~cofix l ntns =
let (env,_,pl,evd),fix,info = interp_recursive ~program_mode:false ~cofix l ntns in
check_recursive true env evd fix;
(fix,pl,Evd.evar_universe_context evd,info)
let declare_fixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) indexes ntns =
if List.exists Option.is_empty fixdefs then
(* Some bodies to define by proof *)
let thms =
List.map3 (fun id t (ctx,imps,_) -> (id,(EConstr.of_constr t,(List.map RelDecl.get_name ctx,imps))))
fixnames fixtypes fiximps in
let init_tac =
Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC)
fixdefs) in
let evd = Evd.from_ctx ctx in
Lemmas.start_proof_with_initialization (Global,poly,DefinitionBody Fixpoint)
evd pl (Some(false,indexes,init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ()))
else begin
(* We shortcut the proof process *)
let fixdefs = List.map Option.get fixdefs in
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let env = Global.env() in
let indexes = search_guard env indexes fixdecls in
let fiximps = List.map (fun (n,r,p) -> r) fiximps in
let vars = Univops.universes_of_constr env (mkFix ((indexes,0),fixdecls)) in
let fixdecls =
List.map_i (fun i _ -> mkFix ((indexes,i),fixdecls)) 0 fixnames in
let evd = Evd.from_ctx ctx in
let evd = Evd.restrict_universe_context evd vars in
let ctx = Evd.check_univ_decl ~poly evd pl in
let pl = Evd.universe_binders evd in
let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in
ignore (List.map4 (DeclareDef.declare_fix (local, poly, Fixpoint) pl ctx)
fixnames fixdecls fixtypes fiximps);
(* Declare the recursive definitions *)
fixpoint_message (Some indexes) fixnames;
end;
(* Declare notations *)
List.iter (Metasyntax.add_notation_interpretation (Global.env())) ntns
let declare_cofixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) ntns =
if List.exists Option.is_empty fixdefs then
(* Some bodies to define by proof *)
let thms =
List.map3 (fun id t (ctx,imps,_) -> (id,(EConstr.of_constr t,(List.map RelDecl.get_name ctx,imps))))
fixnames fixtypes fiximps in
let init_tac =
Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC)
fixdefs) in
let evd = Evd.from_ctx ctx in
Lemmas.start_proof_with_initialization (Global,poly, DefinitionBody CoFixpoint)
evd pl (Some(true,[],init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ()))
else begin
(* We shortcut the proof process *)
let fixdefs = List.map Option.get fixdefs in
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let fixdecls = List.map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 fixnames in
let env = Global.env () in
let vars = Univops.universes_of_constr env (List.hd fixdecls) in
let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in
let fiximps = List.map (fun (len,imps,idx) -> imps) fiximps in
let evd = Evd.from_ctx ctx in
let evd = Evd.restrict_universe_context evd vars in
let ctx = Evd.check_univ_decl ~poly evd pl in
let pl = Evd.universe_binders evd in
ignore (List.map4 (DeclareDef.declare_fix (local, poly, CoFixpoint) pl ctx)
fixnames fixdecls fixtypes fiximps);
(* Declare the recursive definitions *)
cofixpoint_message fixnames
end;
(* Declare notations *)
List.iter (Metasyntax.add_notation_interpretation (Global.env())) ntns
let extract_decreasing_argument limit = function
| (na,CStructRec) -> na
| (na,_) when not limit -> na
| _ -> user_err Pp.(str
"Only structural decreasing is supported for a non-Program Fixpoint")
let extract_fixpoint_components limit l =
let fixl, ntnl = List.split l in
let fixl = List.map (fun (({CAst.v=id},pl),ann,bl,typ,def) ->
let ann = extract_decreasing_argument limit ann in
{fix_name = id; fix_annot = ann; fix_univs = pl;
fix_binders = bl; fix_body = def; fix_type = typ}) fixl in
fixl, List.flatten ntnl
let extract_cofixpoint_components l =
let fixl, ntnl = List.split l in
List.map (fun (({CAst.v=id},pl),bl,typ,def) ->
{fix_name = id; fix_annot = None; fix_univs = pl;
fix_binders = bl; fix_body = def; fix_type = typ}) fixl,
List.flatten ntnl
let check_safe () =
let open Declarations in
let flags = Environ.typing_flags (Global.env ()) in
flags.check_universes && flags.check_guarded
let do_fixpoint local poly l =
let fixl, ntns = extract_fixpoint_components true l in
let (_, _, _, info as fix) = interp_fixpoint ~cofix:false fixl ntns in
let possible_indexes =
List.map compute_possible_guardness_evidences info in
declare_fixpoint local poly fix possible_indexes ntns;
if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else ()
let do_cofixpoint local poly l =
let fixl,ntns = extract_cofixpoint_components l in
let cofix = interp_fixpoint ~cofix:true fixl ntns in
declare_cofixpoint local poly cofix ntns;
if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else ()
|