aboutsummaryrefslogtreecommitdiffhomepage
path: root/vernac/comFixpoint.ml
blob: 37258c2d4534ae1718e2ee6b618de56b2ddcdd87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
open Pp
open CErrors
open Util
open Constr
open Vars
open Termops
open Declare
open Names
open Constrexpr
open Constrexpr_ops
open Constrintern
open Decl_kinds
open Pretyping
open Evarutil
open Evarconv

module RelDecl = Context.Rel.Declaration

(* 3c| Fixpoints and co-fixpoints *)

(* An (unoptimized) function that maps preorders to partial orders...

   Input:  a list of associations (x,[y1;...;yn]), all yi distincts
           and different of x, meaning x<=y1, ..., x<=yn

   Output: a list of associations (x,Inr [y1;...;yn]), collecting all
           distincts yi greater than x, _or_, (x, Inl y) meaning that
           x is in the same class as y (in which case, x occurs
           nowhere else in the association map)

   partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list
*)

let rec partial_order cmp = function
  | [] -> []
  | (x,xge)::rest ->
    let rec browse res xge' = function
    | [] ->
        let res = List.map (function
          | (z, Inr zge) when List.mem_f cmp x zge ->
            (z, Inr (List.union cmp zge xge'))
          | r -> r) res in
        (x,Inr xge')::res
    | y::xge ->
      let rec link y =
        try match List.assoc_f cmp y res with
        | Inl z -> link z
        | Inr yge ->
          if List.mem_f cmp x yge then
            let res = List.remove_assoc_f cmp y res in
            let res = List.map (function
              | (z, Inl t) ->
                  if cmp t y then (z, Inl x) else (z, Inl t)
              | (z, Inr zge) ->
                  if List.mem_f cmp y zge then
                    (z, Inr (List.add_set cmp x (List.remove cmp y zge)))
                  else
                    (z, Inr zge)) res in
            browse ((y,Inl x)::res) xge' (List.union cmp xge (List.remove cmp x yge))
          else
            browse res (List.add_set cmp y (List.union cmp xge' yge)) xge
        with Not_found -> browse res (List.add_set cmp y xge') xge
      in link y
    in browse (partial_order cmp rest) [] xge

let non_full_mutual_message x xge y yge isfix rest =
  let reason =
    if Id.List.mem x yge then
      Id.print y ++ str " depends on " ++ Id.print x ++ strbrk " but not conversely"
    else if Id.List.mem y xge then
      Id.print x ++ str " depends on " ++ Id.print y ++ strbrk " but not conversely"
    else
      Id.print y ++ str " and " ++ Id.print x ++ strbrk " are not mutually dependent" in
  let e = if List.is_empty rest then reason else strbrk "e.g., " ++ reason in
  let k = if isfix then "fixpoint" else "cofixpoint" in
  let w =
    if isfix
    then strbrk "Well-foundedness check may fail unexpectedly." ++ fnl()
    else mt () in
  strbrk "Not a fully mutually defined " ++ str k ++ fnl () ++
  str "(" ++ e ++ str ")." ++ fnl () ++ w

let warn_non_full_mutual =
  CWarnings.create ~name:"non-full-mutual" ~category:"fixpoints"
         (fun (x,xge,y,yge,isfix,rest) ->
          non_full_mutual_message x xge y yge isfix rest)

let check_mutuality env evd isfix fixl =
  let names = List.map fst fixl in
  let preorder =
    List.map (fun (id,def) ->
      (id, List.filter (fun id' -> not (Id.equal id id') && occur_var env evd id' (EConstr.of_constr def)) names))
      fixl in
  let po = partial_order Id.equal preorder in
  match List.filter (function (_,Inr _) -> true | _ -> false) po with
    | (x,Inr xge)::(y,Inr yge)::rest ->
       warn_non_full_mutual (x,xge,y,yge,isfix,rest)
    | _ -> ()

type structured_fixpoint_expr = {
  fix_name : Id.t;
  fix_univs : universe_decl_expr option;
  fix_annot : lident option;
  fix_binders : local_binder_expr list;
  fix_body : constr_expr option;
  fix_type : constr_expr
}

let interp_fix_context ~cofix env sigma fix =
  let before, after = if not cofix then split_at_annot fix.fix_binders fix.fix_annot else [], fix.fix_binders in
  let sigma, (impl_env, ((env', ctx), imps)) = interp_context_evars env sigma before in
  let sigma, (impl_env', ((env'', ctx'), imps')) = interp_context_evars ~impl_env ~shift:(Context.Rel.nhyps ctx) env' sigma after in
  let annot = Option.map (fun _ -> List.length (assums_of_rel_context ctx)) fix.fix_annot in
  sigma, ((env'', ctx' @ ctx), (impl_env',imps @ imps'), annot)

let interp_fix_ccl sigma impls (env,_) fix =
  interp_type_evars_impls ~impls env sigma fix.fix_type

let interp_fix_body env_rec sigma impls (_,ctx) fix ccl =
  let open EConstr in
  Option.cata (fun body ->
    let env = push_rel_context ctx env_rec in
    let sigma, body = interp_casted_constr_evars env sigma ~impls body ccl in
    sigma, Some (it_mkLambda_or_LetIn body ctx)) (sigma, None) fix.fix_body

let build_fix_type (_,ctx) ccl = EConstr.it_mkProd_or_LetIn ccl ctx

let prepare_recursive_declaration fixnames fixtypes fixdefs =
  let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
  let names = List.map (fun id -> Name id) fixnames in
  (Array.of_list names, Array.of_list fixtypes, Array.of_list defs)

(* Jump over let-bindings. *)

let compute_possible_guardness_evidences (ctx,_,recindex) =
  (* A recursive index is characterized by the number of lambdas to
     skip before finding the relevant inductive argument *)
  match recindex with
  | Some i -> [i]
  | None ->
      (* If recursive argument was not given by user, we try all args.
         An earlier approach was to look only for inductive arguments,
         but doing it properly involves delta-reduction, and it finally
         doesn't seem to worth the effort (except for huge mutual
         fixpoints ?) *)
      List.interval 0 (Context.Rel.nhyps ctx - 1)

type recursive_preentry =
  Id.t list * constr option list * types list

(* Wellfounded definition *)

let contrib_name = "Program"
let subtac_dir = [contrib_name]
let tactics_module = subtac_dir @ ["Tactics"]

let init_constant dir s sigma =
  Evarutil.new_global sigma (Coqlib.coq_reference "Command" dir s)

let fix_proto = init_constant tactics_module "fix_proto"

let interp_recursive ~program_mode ~cofix fixl notations =
  let open Context.Named.Declaration in
  let open EConstr in
  let env = Global.env() in
  let fixnames = List.map (fun fix -> fix.fix_name) fixl in

  (* Interp arities allowing for unresolved types *)
  let all_universes =
    List.fold_right (fun sfe acc ->
        match sfe.fix_univs , acc with
        | None , acc -> acc
        | x , None -> x
        | Some ls , Some us ->
          let open UState in
          let lsu = ls.univdecl_instance and usu = us.univdecl_instance in
           if not (CList.for_all2eq (fun x y -> Id.equal x.CAst.v y.CAst.v) lsu usu) then
             user_err Pp.(str "(co)-recursive definitions should all have the same universe binders");
           Some us) fixl None in
  let sigma, decl = interp_univ_decl_opt env all_universes in
  let sigma, (fixctxs, fiximppairs, fixannots) =
    on_snd List.split3 @@
      List.fold_left_map (fun sigma -> interp_fix_context env sigma ~cofix) sigma fixl in
  let fixctximpenvs, fixctximps = List.split fiximppairs in
  let sigma, (fixccls,fixcclimps) =
    on_snd List.split @@
      List.fold_left3_map interp_fix_ccl sigma fixctximpenvs fixctxs fixl in
  let fixtypes = List.map2 build_fix_type fixctxs fixccls in
  let fixtypes = List.map (fun c -> nf_evar sigma c) fixtypes in
  let fiximps = List.map3
    (fun ctximps cclimps (_,ctx) -> ctximps@(Impargs.lift_implicits (Context.Rel.nhyps ctx) cclimps))
    fixctximps fixcclimps fixctxs in
  let sigma, rec_sign =
    List.fold_left2
      (fun (sigma, env') id t ->
         if program_mode then
           let sigma, sort = Typing.type_of ~refresh:true env sigma t in
           let sigma, fixprot =
             try
               let sigma, h_term = fix_proto sigma in
               let app = mkApp (h_term, [|sort; t|]) in
               Typing.solve_evars env sigma app
             with e when CErrors.noncritical e -> sigma, t
           in
           sigma, LocalAssum (id,fixprot) :: env'
         else sigma, LocalAssum (id,t) :: env')
      (sigma,[]) fixnames fixtypes
  in
  let env_rec = push_named_context rec_sign env in

  (* Get interpretation metadatas *)
  let impls = compute_internalization_env env sigma Recursive fixnames fixtypes fiximps in

  (* Interp bodies with rollback because temp use of notations/implicit *)
  let sigma, fixdefs =
    Metasyntax.with_syntax_protection (fun () ->
      List.iter (Metasyntax.set_notation_for_interpretation env_rec impls) notations;
      List.fold_left4_map
        (fun sigma fixctximpenv -> interp_fix_body env_rec sigma (Id.Map.fold Id.Map.add fixctximpenv impls))
        sigma fixctximpenvs fixctxs fixl fixccls)
      () in

  (* Instantiate evars and check all are resolved *)
  let sigma = solve_unif_constraints_with_heuristics env_rec sigma in
  let sigma = Evd.minimize_universes sigma in
  (* XXX: We still have evars here in Program *)
  let fixdefs = List.map (fun c -> Option.map EConstr.(to_constr ~abort_on_undefined_evars:false sigma) c) fixdefs in
  let fixtypes = List.map EConstr.(to_constr sigma) fixtypes in
  let fixctxs = List.map (fun (_,ctx) -> ctx) fixctxs in

  (* Build the fix declaration block *)
  (env,rec_sign,decl,sigma), (fixnames,fixdefs,fixtypes), List.combine3 fixctxs fiximps fixannots

let check_recursive isfix env evd (fixnames,fixdefs,_) =
  check_evars_are_solved env evd (Evd.from_env env);
  if List.for_all Option.has_some fixdefs then begin
    let fixdefs = List.map Option.get fixdefs in
    check_mutuality env evd isfix (List.combine fixnames fixdefs)
  end

let interp_fixpoint ~cofix l ntns =
  let (env,_,pl,evd),fix,info = interp_recursive ~program_mode:false ~cofix l ntns in
  check_recursive true env evd fix;
  (fix,pl,Evd.evar_universe_context evd,info)

let declare_fixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) indexes ntns =
  if List.exists Option.is_empty fixdefs then
    (* Some bodies to define by proof *)
    let thms =
      List.map3 (fun id t (ctx,imps,_) -> (id,(EConstr.of_constr t,(List.map RelDecl.get_name ctx,imps))))
                fixnames fixtypes fiximps in
    let init_tac =
      Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC)
        fixdefs) in
    let evd = Evd.from_ctx ctx in
    Lemmas.start_proof_with_initialization (local,poly,DefinitionBody Fixpoint)
      evd pl (Some(false,indexes,init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ()))
  else begin
    (* We shortcut the proof process *)
    let fixdefs = List.map Option.get fixdefs in
    let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
    let env = Global.env() in
    let indexes = search_guard env indexes fixdecls in
    let fiximps = List.map (fun (n,r,p) -> r) fiximps in
    let vars = Univops.universes_of_constr (mkFix ((indexes,0),fixdecls)) in
    let fixdecls =
      List.map_i (fun i _ -> mkFix ((indexes,i),fixdecls)) 0 fixnames in
    let evd = Evd.from_ctx ctx in
    let evd = Evd.restrict_universe_context evd vars in
    let ctx = Evd.check_univ_decl ~poly evd pl in
    let pl = Evd.universe_binders evd in
    let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in
    ignore (List.map4 (DeclareDef.declare_fix (local, poly, Fixpoint) pl ctx)
              fixnames fixdecls fixtypes fiximps);
    (* Declare the recursive definitions *)
    fixpoint_message (Some indexes) fixnames;
  end;
  (* Declare notations *)
  List.iter (Metasyntax.add_notation_interpretation (Global.env())) ntns

let declare_cofixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) ntns =
  if List.exists Option.is_empty fixdefs then
    (* Some bodies to define by proof *)
    let thms =
      List.map3 (fun id t (ctx,imps,_) -> (id,(EConstr.of_constr t,(List.map RelDecl.get_name ctx,imps))))
                fixnames fixtypes fiximps in
    let init_tac =
      Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC)
        fixdefs) in
    let evd = Evd.from_ctx ctx in
      Lemmas.start_proof_with_initialization (Global,poly, DefinitionBody CoFixpoint)
      evd pl (Some(true,[],init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ()))
  else begin
    (* We shortcut the proof process *)
    let fixdefs = List.map Option.get fixdefs in
    let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
    let fixdecls = List.map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 fixnames in
    let vars = Univops.universes_of_constr (List.hd fixdecls) in
    let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in
    let fiximps = List.map (fun (len,imps,idx) -> imps) fiximps in
    let evd = Evd.from_ctx ctx in
    let evd = Evd.restrict_universe_context evd vars in
    let ctx = Evd.check_univ_decl ~poly evd pl in
    let pl = Evd.universe_binders evd in
    ignore (List.map4 (DeclareDef.declare_fix (local, poly, CoFixpoint) pl ctx)
              fixnames fixdecls fixtypes fiximps);
    (* Declare the recursive definitions *)
    cofixpoint_message fixnames
  end;
  (* Declare notations *)
  List.iter (Metasyntax.add_notation_interpretation (Global.env())) ntns

let extract_decreasing_argument limit = function
  | (na,CStructRec) -> na
  | (na,_) when not limit -> na
  | _ -> user_err Pp.(str
      "Only structural decreasing is supported for a non-Program Fixpoint")

let extract_fixpoint_components limit l =
  let fixl, ntnl = List.split l in
  let fixl = List.map (fun (({CAst.v=id},pl),ann,bl,typ,def) ->
    let ann = extract_decreasing_argument limit ann in
      {fix_name = id; fix_annot = ann; fix_univs = pl;
       fix_binders = bl; fix_body = def; fix_type = typ}) fixl in
  fixl, List.flatten ntnl

let extract_cofixpoint_components l =
  let fixl, ntnl = List.split l in
  List.map (fun (({CAst.v=id},pl),bl,typ,def) ->
            {fix_name = id; fix_annot = None; fix_univs = pl;
             fix_binders = bl; fix_body = def; fix_type = typ}) fixl,
  List.flatten ntnl

let check_safe () =
  let open Declarations in
  let flags = Environ.typing_flags (Global.env ()) in
  flags.check_universes && flags.check_guarded

let do_fixpoint local poly l =
  let fixl, ntns = extract_fixpoint_components true l in
  let (_, _, _, info as fix) = interp_fixpoint ~cofix:false fixl ntns in
  let possible_indexes =
    List.map compute_possible_guardness_evidences info in
  declare_fixpoint local poly fix possible_indexes ntns;
  if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else ()

let do_cofixpoint local poly l =
  let fixl,ntns = extract_cofixpoint_components l in
  let cofix = interp_fixpoint ~cofix:true fixl ntns in
  declare_cofixpoint local poly cofix ntns;
  if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else ()