1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open CErrors
open Util
open Vars
open Declare
open Names
open Globnames
open Constrexpr_ops
open Constrintern
open Impargs
open Decl_kinds
open Pretyping
open Entries
(* 2| Variable/Hypothesis/Parameter/Axiom declarations *)
let axiom_into_instance = ref false
let _ =
let open Goptions in
declare_bool_option
{ optdepr = false;
optname = "automatically declare axioms whose type is a typeclass as instances";
optkey = ["Typeclasses";"Axioms";"Are";"Instances"];
optread = (fun _ -> !axiom_into_instance);
optwrite = (:=) axiom_into_instance; }
let should_axiom_into_instance = function
| Discharge ->
(* The typeclass behaviour of Variable and Context doesn't depend
on section status *)
true
| Global | Local -> !axiom_into_instance
let declare_assumption is_coe (local,p,kind) (c,ctx) pl imps impl nl {CAst.v=ident} =
match local with
| Discharge when Lib.sections_are_opened () ->
let ctx = match ctx with
| Monomorphic_const_entry ctx -> ctx
| Polymorphic_const_entry ctx -> Univ.ContextSet.of_context ctx
in
let decl = (Lib.cwd(), SectionLocalAssum ((c,ctx),p,impl), IsAssumption kind) in
let _ = declare_variable ident decl in
let () = assumption_message ident in
let () =
if not !Flags.quiet && Proof_global.there_are_pending_proofs () then
Feedback.msg_info (str"Variable" ++ spc () ++ Id.print ident ++
strbrk " is not visible from current goals")
in
let r = VarRef ident in
let () = Typeclasses.declare_instance None true r in
let () = if is_coe then Class.try_add_new_coercion r ~local:true false in
(r,Univ.Instance.empty,true)
| Global | Local | Discharge ->
let do_instance = should_axiom_into_instance local in
let local = DeclareDef.get_locality ident ~kind:"axiom" local in
let inl = let open Declaremods in match nl with
| NoInline -> None
| DefaultInline -> Some (Flags.get_inline_level())
| InlineAt i -> Some i
in
let decl = (ParameterEntry (None,(c,ctx),inl), IsAssumption kind) in
let kn = declare_constant ident ~local decl in
let gr = ConstRef kn in
let () = maybe_declare_manual_implicits false gr imps in
let () = Declare.declare_univ_binders gr pl in
let () = assumption_message ident in
let () = if do_instance then Typeclasses.declare_instance None false gr in
let () = if is_coe then Class.try_add_new_coercion gr ~local p in
let inst = match ctx with
| Polymorphic_const_entry ctx -> Univ.UContext.instance ctx
| Monomorphic_const_entry _ -> Univ.Instance.empty
in
(gr,inst,Lib.is_modtype_strict ())
let interp_assumption sigma env impls bl c =
let c = mkCProdN ?loc:(local_binders_loc bl) bl c in
let sigma, (ty, impls) = interp_type_evars_impls env sigma ~impls c in
sigma, (ty, impls)
(* When monomorphic the universe constraints are declared with the first declaration only. *)
let next_uctx =
let empty_uctx = Monomorphic_const_entry Univ.ContextSet.empty in
function
| Polymorphic_const_entry _ as uctx -> uctx
| Monomorphic_const_entry _ -> empty_uctx
let declare_assumptions idl is_coe k (c,uctx) pl imps nl =
let refs, status, _ =
List.fold_left (fun (refs,status,uctx) id ->
let ref',u',status' =
declare_assumption is_coe k (c,uctx) pl imps false nl id in
(ref',u')::refs, status' && status, next_uctx uctx)
([],true,uctx) idl
in
List.rev refs, status
let maybe_error_many_udecls = function
| ({CAst.loc;v=id}, Some _) ->
user_err ?loc ~hdr:"many_universe_declarations"
Pp.(str "When declaring multiple axioms in one command, " ++
str "only the first is allowed a universe binder " ++
str "(which will be shared by the whole block).")
| (_, None) -> ()
let process_assumptions_udecls kind l =
let udecl, first_id = match l with
| (coe, ((id, udecl)::rest, c))::rest' ->
List.iter maybe_error_many_udecls rest;
List.iter (fun (coe, (idl, c)) -> List.iter maybe_error_many_udecls idl) rest';
udecl, id
| (_, ([], _))::_ | [] -> assert false
in
let () = match kind, udecl with
| (Discharge, _, _), Some _ when Lib.sections_are_opened () ->
let loc = first_id.CAst.loc in
let msg = Pp.str "Section variables cannot be polymorphic." in
user_err ?loc msg
| _ -> ()
in
udecl, List.map (fun (coe, (idl, c)) -> coe, (List.map fst idl, c)) l
let do_assumptions kind nl l =
let open Context.Named.Declaration in
let env = Global.env () in
let udecl, l = process_assumptions_udecls kind l in
let sigma, udecl = Univdecls.interp_univ_decl_opt env udecl in
let l =
if pi2 kind (* poly *) then
(* Separate declarations so that A B : Type puts A and B in different levels. *)
List.fold_right (fun (is_coe,(idl,c)) acc ->
List.fold_right (fun id acc ->
(is_coe, ([id], c)) :: acc) idl acc)
l []
else l
in
(* We intepret all declarations in the same evar_map, i.e. as a telescope. *)
let (sigma,_,_),l = List.fold_left_map (fun (sigma,env,ienv) (is_coe,(idl,c)) ->
let sigma,(t,imps) = interp_assumption sigma env ienv [] c in
let env =
EConstr.push_named_context (List.map (fun {CAst.v=id} -> LocalAssum (id,t)) idl) env in
let ienv = List.fold_right (fun {CAst.v=id} ienv ->
let impls = compute_internalization_data env sigma Variable t imps in
Id.Map.add id impls ienv) idl ienv in
((sigma,env,ienv),((is_coe,idl),t,imps)))
(sigma,env,empty_internalization_env) l
in
let sigma = solve_remaining_evars all_and_fail_flags env sigma Evd.empty in
(* The universe constraints come from the whole telescope. *)
let sigma = Evd.minimize_universes sigma in
let nf_evar c = EConstr.to_constr sigma c in
let uvars, l = List.fold_left_map (fun uvars (coe,t,imps) ->
let t = nf_evar t in
let uvars = Univ.LSet.union uvars (Univops.universes_of_constr env t) in
uvars, (coe,t,imps))
Univ.LSet.empty l
in
let sigma = Evd.restrict_universe_context sigma uvars in
let uctx = Evd.check_univ_decl ~poly:(pi2 kind) sigma udecl in
let ubinders = Evd.universe_binders sigma in
pi2 (List.fold_left (fun (subst,status,uctx) ((is_coe,idl),t,imps) ->
let t = replace_vars subst t in
let refs, status' = declare_assumptions idl is_coe kind (t,uctx) ubinders imps nl in
let subst' = List.map2
(fun {CAst.v=id} (c,u) -> (id, UnivGen.constr_of_global_univ (c,u)))
idl refs
in
subst'@subst, status' && status, next_uctx uctx)
([], true, uctx) l)
|