1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2013 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
let prerr_endline s = if !Flags.debug then prerr_endline s else ()
open Stateid
open Vernacexpr
open Errors
open Pp
open Names
open Util
open Ppvernac
open Vernac_classifier
(* During interactive use we cache more states so that Undoing is fast *)
let interactive () =
!Flags.ide_slave || !Flags.print_emacs || not !Flags.batch_mode
(* Wrap interp to set the feedback id *)
let interp ?proof id (verbosely, loc, expr) =
let internal_command = function
| VernacResetName _ | VernacResetInitial | VernacBack _
| VernacBackTo _ | VernacRestart | VernacUndo _ | VernacUndoTo _
| VernacBacktrack _ | VernacAbortAll | VernacAbort _ -> true | _ -> false in
if internal_command expr then ()
else begin
Pp.set_id_for_feedback (Interface.State id);
try Vernacentries.interp ~verbosely ?proof (loc, expr)
with e -> raise (Errors.push (Cerrors.process_vernac_interp_error e))
end
type ast = bool * Loc.t * vernac_expr
let pr_ast (_, _, v) = pr_vernac v
module Vcs_ = Vcs.Make(StateidOrderedType)
type branch_type = [ `Master | `Proof of string * int ]
type cmd_t = ast
type fork_t = ast * Vcs_.branch_name * Names.Id.t list
type qed_t =
ast * vernac_qed_type * (Vcs_.branch_name * branch_type Vcs_.branch_info)
type seff_t = ast option
type alias_t = state_id
type transaction =
| Cmd of cmd_t
| Fork of fork_t
| Qed of qed_t
| Sideff of seff_t
| Alias of alias_t
| Noop
type step =
[ `Cmd of cmd_t
| `Fork of fork_t
| `Qed of qed_t * state_id
| `Sideff of [ `Ast of ast * state_id | `Id of state_id ]
| `Alias of alias_t ]
type visit = { step : step; next : state_id }
type state = States.state * Proof_global.state
type state_info = { (* Make private *)
mutable n_reached : int;
mutable n_goals : int;
mutable state : state option;
}
let default_info () = { n_reached = 0; n_goals = 0; state = None }
(* Functions that work on a Vcs with a specific branch type *)
module Vcs_aux : sig
val proof_nesting : (branch_type, 't,'i) Vcs_.t -> int
val find_proof_at_depth :
(branch_type, 't, 'i) Vcs_.t -> int ->
Vcs_.branch_name * branch_type Vcs_.branch_info
end = struct (* {{{ *)
let proof_nesting vcs =
List.fold_left max 0
(List.map_filter
(function { Vcs_.kind = `Proof (_,n) } -> Some n | _ -> None)
(List.map (Vcs_.get_branch vcs) (Vcs_.branches vcs)))
let find_proof_at_depth vcs pl =
try List.find (function
| _, { Vcs_.kind = `Proof(m, n) } -> n = pl
| _ -> false)
(List.map (fun h -> h, Vcs_.get_branch vcs h) (Vcs_.branches vcs))
with Not_found -> failwith "find_proof_at_depth"
end (* }}} *)
(* Imperative wrap around VCS to obtain _the_ VCS *)
module VCS : sig
type id = state_id
type branch_name = Vcs_.branch_name
type 'branch_type branch_info = 'branch_type Vcs_.branch_info = {
kind : [> `Master] as 'branch_type;
root : id;
pos : id;
}
type vcs = (branch_type, transaction, state_info) Vcs_.t
val init : id -> unit
val string_of_branch_name : branch_name -> string
val current_branch : unit -> branch_name
val checkout : branch_name -> unit
val master : branch_name
val branches : unit -> branch_name list
val get_branch : branch_name -> branch_type branch_info
val get_branch_pos : branch_name -> id
val new_node : unit -> id
val merge : id -> ours:transaction -> ?into:branch_name -> branch_name -> unit
val delete_branch : branch_name -> unit
val commit : id -> transaction -> unit
val mk_branch_name : ast -> branch_name
val branch : branch_name -> branch_type -> unit
val get_info : id -> state_info
val reached : id -> bool -> unit
val goals : id -> int -> unit
val set_state : id -> state -> unit
val forget_state : id -> unit
val create_cluster : id list -> unit
val proof_nesting : unit -> int
val checkout_shallowest_proof_branch : unit -> unit
val propagate_sideff : ast option -> unit
val visit : id -> visit
val print : unit -> unit
val backup : unit -> vcs
val restore : vcs -> unit
end = struct (* {{{ *)
include Vcs_
module StateidSet = Set.Make(StateidOrderedType)
open Printf
let print_dag vcs () = (* {{{ *)
let fname = "stm" in
let string_of_transaction = function
| Cmd t | Fork (t, _, _) ->
(try string_of_ppcmds (pr_ast t) with _ -> "ERR")
| Sideff (Some t) ->
sprintf "Sideff(%s)"
(try string_of_ppcmds (pr_ast t) with _ -> "ERR")
| Sideff None -> "EnvChange"
| Noop -> " "
| Alias id -> sprintf "Alias(%s)" (string_of_state_id id)
| Qed (a,_,_) -> string_of_ppcmds (pr_ast a) in
let is_green id =
match get_info vcs id with
| Some { state = Some _ } -> true
| _ -> false in
let is_red id =
match get_info vcs id with
| Some s -> s.n_reached = ~-1
| _ -> false in
let head = current_branch vcs in
let heads =
List.map (fun x -> x, (get_branch vcs x).pos) (branches vcs) in
let graph = dag vcs in
let quote s =
Str.global_replace (Str.regexp "\n") "<BR/>"
(Str.global_replace (Str.regexp "<") "<"
(Str.global_replace (Str.regexp ">") ">"
(Str.global_replace (Str.regexp "\"") """
(Str.global_replace (Str.regexp "&") "&"
(String.sub s 0 (min (String.length s) 20)))))) in
let fname_dot, fname_ps =
let f = "/tmp/" ^ Filename.basename fname in
f ^ ".dot", f ^ ".pdf" in
let node id = "s" ^ string_of_state_id id in
let edge tr =
sprintf "<<FONT POINT-SIZE=\"12\" FACE=\"sans\">%s</FONT>>"
(quote (string_of_transaction tr)) in
let ids = ref StateidSet.empty in
let clus = Hashtbl.create 13 in
let node_info id =
match get_info vcs id with
| None -> ""
| Some info ->
sprintf "<<FONT POINT-SIZE=\"12\">%s</FONT>" (string_of_state_id id) ^
sprintf " <FONT POINT-SIZE=\"11\">r:%d g:%d</FONT>>"
info.n_reached info.n_goals in
let color id =
if is_red id then "red" else if is_green id then "green" else "white" in
let nodefmt oc id =
fprintf oc "%s [label=%s,style=filled,fillcolor=%s];\n"
(node id) (node_info id) (color id) in
let add_to_clus_or_ids from cf =
match cf with
| None -> ids := StateidSet.add from !ids; false
| Some c -> Hashtbl.replace clus c
(try let n = Hashtbl.find clus c in from::n
with Not_found -> [from]); true in
let oc = open_out fname_dot in
output_string oc "digraph states {\nsplines=ortho\n";
Dag.iter graph (fun from cf _ l ->
let c1 = add_to_clus_or_ids from cf in
List.iter (fun (dest, trans) ->
let c2 = add_to_clus_or_ids dest (Dag.cluster_of graph dest) in
fprintf oc "%s -> %s [label=%s,labelfloat=%b];\n"
(node from) (node dest) (edge trans) (c1 && c2)) l
);
StateidSet.iter (nodefmt oc) !ids;
Hashtbl.iter (fun c nodes ->
fprintf oc "subgraph cluster_%s {\n" (Dag.string_of_cluster_id c);
List.iter (nodefmt oc) nodes;
fprintf oc "color=blue; }\n"
) clus;
List.iteri (fun i (b,id) ->
let shape = if head = b then "box3d" else "box" in
fprintf oc "b%d -> %s;\n" i (node id);
fprintf oc "b%d [shape=%s,label=\"%s\"];\n" i shape
(string_of_branch_name b);
) heads;
output_string oc "}\n";
close_out oc;
ignore(Sys.command
("dot -Tpdf -Gcharset=latin1 " ^ fname_dot ^ " -o" ^ fname_ps))
(* }}} *)
type vcs = (branch_type, transaction, state_info) t
let vcs : vcs ref = ref (empty dummy_state_id)
let init id =
vcs := empty id;
vcs := set_info !vcs id (default_info ())
let current_branch () = current_branch !vcs
let checkout head = vcs := checkout !vcs head
let master = master
let branches () = branches !vcs
let get_branch head = get_branch !vcs head
let get_branch_pos head = (get_branch head).pos
let new_node () =
let id = Stateid.fresh_state_id () in
vcs := set_info !vcs id (default_info ());
id
let merge id ~ours ?into branch =
vcs := merge !vcs id ~ours ~theirs:Noop ?into branch
let delete_branch branch = vcs := delete_branch !vcs branch
let commit id t = vcs := commit !vcs id t
let mk_branch_name (_, _, x) = mk_branch_name
(match x with
| VernacDefinition (_,(_,i),_) -> string_of_id i
| VernacStartTheoremProof (_,[Some (_,i),_],_) -> string_of_id i
| _ -> "branch")
let branch name kind = vcs := branch !vcs name kind
let get_info id =
match get_info !vcs id with
| Some x -> x
| None -> assert false
let set_state id s = (get_info id).state <- Some s
let forget_state id = (get_info id).state <- None
let reached id b =
let info = get_info id in
if b then info.n_reached <- info.n_reached + 1
else info.n_reached <- -1
let goals id n = (get_info id).n_goals <- n
let create_cluster l = vcs := create_cluster !vcs l
let proof_nesting () = Vcs_aux.proof_nesting !vcs
let checkout_shallowest_proof_branch () =
let pl = proof_nesting () in
try
let branch, mode = match Vcs_aux.find_proof_at_depth !vcs pl with
| h, { Vcs_.kind = `Proof (m, _) } -> h, m | _ -> assert false in
checkout branch;
Proof_global.activate_proof_mode mode
with Failure _ ->
checkout master;
Proof_global.disactivate_proof_mode "Classic" (* XXX *)
(* copies the transaction on every open branch *)
let propagate_sideff t =
List.iter (fun b ->
checkout b;
let id = new_node () in
merge id ~ours:(Sideff t) ~into:b master)
(List.filter ((<>) master) (branches ()))
let visit id =
match Dag.from_node (dag !vcs) id with
| [n, Cmd x] -> { step = `Cmd x; next = n }
| [n, Alias x] -> { step = `Alias x; next = n }
| [n, Fork x] -> { step = `Fork x; next = n }
| [n, Qed x; p, Noop]
| [p, Noop; n, Qed x] -> { step = `Qed (x,p); next = n }
| [n, Sideff None; p, Noop]
| [p, Noop; n, Sideff None]-> { step = `Sideff (`Id p); next = n }
| [n, Sideff (Some x); p, Noop]
| [p, Noop; n, Sideff (Some x)]-> { step = `Sideff (`Ast (x,p)); next = n }
| _ -> anomaly (str "Malformed VCS, or visiting the root")
module NB : sig
val command : (unit -> unit) -> unit
end = struct
let m = Mutex.create ()
let c = Condition.create ()
let job = ref None
let worker = ref None
let set_last_job j =
Mutex.lock m;
job := Some j;
Condition.signal c;
Mutex.unlock m
let get_last_job () =
Mutex.lock m;
while !job = None do Condition.wait c m; done;
match !job with
| None -> assert false
| Some x -> job := None; Mutex.unlock m; x
let run_command () =
while true do get_last_job () () done
let command job =
set_last_job job;
if !worker = None then worker := Some (Thread.create run_command ())
end
let print () =
if not !Flags.debug then () else NB.command (print_dag !vcs)
let backup () = !vcs
let restore v = vcs := v
end (* }}} *)
(* Fills in the nodes of the VCS *)
module State : sig
(** The function is from unit, so it uses the current state to define
a new one. I.e. one may been to install the right state before
defining a new one.
Warning: an optimization requires that state modifying functions
are always executed using this wrapper. *)
val define : ?cache:bool -> (unit -> unit) -> state_id -> unit
val install_cached : state_id -> unit
val is_cached : state_id -> bool
val exn_on : state_id -> ?valid:state_id -> exn -> exn
end = struct (* {{{ *)
(* cur_id holds dummy_state_id in case the last attempt to define a state
* failed, so the global state may contain garbage *)
let cur_id = ref dummy_state_id
(* helpers *)
let freeze_global_state () =
States.freeze ~marshallable:false, Proof_global.freeze ()
let unfreeze_global_state (s,p) =
States.unfreeze s; Proof_global.unfreeze p
(* hack to make futures functional *)
let in_t, out_t = Dyn.create "state4future"
let () = Future.set_freeze
(fun () -> in_t (freeze_global_state (), !cur_id))
(fun t -> let s,i = out_t t in unfreeze_global_state s; cur_id := i)
let is_cached id =
id = !cur_id ||
match VCS.get_info id with
| { state = Some _ } -> true
| _ -> false
let install_cached id =
if id = !cur_id then () else (* optimization *)
let s =
match VCS.get_info id with
| { state = Some s } -> s
| _ -> anomaly (str "unfreezing a non existing state") in
unfreeze_global_state s; cur_id := id
let freeze id = VCS.set_state id (freeze_global_state ())
let exn_on id ?valid e =
Stateid.add_state_id e ?valid id
let define ?(cache=false) f id =
if is_cached id then
anomaly (str"defining state "++str(string_of_state_id id)++str" twice");
try
prerr_endline ("defining " ^
string_of_state_id id ^ " (cache=" ^ string_of_bool cache ^ ")");
f ();
if cache then freeze id;
cur_id := id;
feedback ~state_id:id Interface.Processed;
VCS.reached id true;
if Proof_global.there_are_pending_proofs () then
VCS.goals id (Proof_global.get_open_goals ());
with e ->
let e = Errors.push e in
let good_id = !cur_id in
cur_id := dummy_state_id;
VCS.reached id false;
match Stateid.get_state_id e with
| Some _ -> raise e
| None -> raise (exn_on id ~valid:good_id e)
end
(* }}} *)
(* Runs all transactions needed to reach a state *)
module Reach : sig
val known_state : cache:bool -> state_id -> unit
end = struct (* {{{ *)
let pstate = ["meta counter"; "evar counter"; "program-tcc-table"]
let collect_proof cur hd id =
let rec collect last accn id =
let view = VCS.visit id in
match last, view.step with
| _, `Cmd x -> collect (Some (id,x)) (id::accn) view.next
| _, `Alias _ -> collect None (id::accn) view.next
| Some (parent, (_,_,VernacExactProof _)), `Fork _ ->
`NotOptimizable `Immediate
| Some (parent, (_,_,VernacProof(_,Some _) as v)), `Fork (_, hd', _) ->
assert( hd = hd' );
`Optimizable (parent, Some v, accn)
| Some (parent, _), `Fork (_, hd', _) ->
assert( hd = hd' );
`MaybeOptimizable (parent, accn)
| _, `Sideff se -> collect None (id::accn) view.next
| _ -> `NotOptimizable `Unknown in
if State.is_cached id then `NotOptimizable `Unknown
else collect (Some cur) [] id
let known_state ~cache id =
(* ugly functions to process nested lemmas, i.e. hard to reproduce
* side effects *)
let cherry_pick_non_pstate () =
Summary.freeze_summary ~marshallable:false ~complement:true pstate,
Lib.freeze ~marshallable:false in
let inject_non_pstate (s,l) = Summary.unfreeze_summary s; Lib.unfreeze l in
let rec pure_cherry_pick_non_pstate id = Future.purify (fun id ->
prerr_endline ("cherry-pick non pstate " ^ string_of_state_id id);
reach id;
cherry_pick_non_pstate ()) id
(* traverses the dag backward from nodes being already calculated *)
and reach ?(cache=cache) id =
prerr_endline ("reaching: " ^ string_of_state_id id);
if State.is_cached id then begin
State.install_cached id;
feedback ~state_id:id Interface.Processed;
prerr_endline ("reached (cache)")
end else
let step, cache_step =
let view = VCS.visit id in
match view.step with
| `Alias id ->
(fun () ->
reach view.next; reach id; Vernacentries.try_print_subgoals ()),
cache
| `Cmd (x,_) -> (fun () -> reach view.next; interp id x), cache
| `Fork (x,_,_) -> (fun () -> reach view.next; interp id x), true
| `Qed ((x,keep,(hd,_)), eop) ->
let rec aux = function
| `Optimizable (start, proof_using_ast, nodes) ->
(fun () ->
prerr_endline ("Optimizable " ^ string_of_state_id id);
VCS.create_cluster nodes;
begin match keep with
| KeepProof ->
let f = Future.create (fun () -> reach eop) in
reach start;
let proof =
Proof_global.close_future_proof
~fix_exn:(State.exn_on id ~valid:eop) f in
reach view.next;
interp id ~proof x;
| DropProof ->
reach view.next;
Option.iter (interp start) proof_using_ast;
interp id x
end;
Proof_global.discard_all ())
| `NotOptimizable `Immediate -> assert (view.next = eop);
(fun () -> reach eop; interp id x; Proof_global.discard_all ())
| `NotOptimizable `Unknown ->
(fun () ->
prerr_endline ("NotOptimizable " ^ string_of_state_id id);
reach eop;
begin match keep with
| KeepProof ->
let proof = Proof_global.close_proof () in
reach view.next;
interp id ~proof x
| DropProof ->
reach view.next;
interp id x
end;
Proof_global.discard_all ())
| `MaybeOptimizable (start, nodes) ->
(fun () ->
prerr_endline ("MaybeOptimizable " ^ string_of_state_id id);
reach ~cache:true start;
(* no sections and no modules *)
if Environ.named_context (Global.env ()) = [] &&
Safe_typing.is_curmod_library (Global.safe_env ()) then
aux (`Optimizable (start, None, nodes)) ()
else
aux (`NotOptimizable `Unknown) ())
in
aux (collect_proof (view.next, x) hd eop), true
| `Sideff (`Ast (x,_)) ->
(fun () -> reach view.next; interp id x), cache
| `Sideff (`Id origin) ->
(fun () ->
let s = pure_cherry_pick_non_pstate origin in
reach view.next;
inject_non_pstate s),
cache
in
State.define ~cache:cache_step step id;
prerr_endline ("reached: "^ string_of_state_id id) in
reach id
end (* }}} *)
(* The backtrack module simulates the classic behavior of a linear document *)
module Backtrack : sig
val record : unit -> unit
val backto : state_id -> unit
val cur : unit -> state_id
(* we could navigate the dag, but this ways easy *)
val branches_of : state_id -> VCS.branch_name list
(* To be installed during initialization *)
val undo_vernac_classifier : vernac_expr -> vernac_classification
end = struct (* {{{ *)
module S = Searchstack
type hystory_elt = {
id : state_id ;
vcs : VCS.vcs;
label : Names.Id.t list; (* To implement a limited form of reset *)
}
let history : hystory_elt S.t = S.create ()
let cur () =
if S.is_empty history then anomaly (str "Empty history");
(S.top history).id
let record () =
let id = VCS.get_branch_pos (VCS.current_branch ()) in
S.push {
id = id;
vcs = VCS.backup ();
label =
if id = initial_state_id || id = dummy_state_id then [] else
match VCS.visit id with
| { step = `Fork (_,_,l) } -> l
| { step = `Cmd (_,_, VernacFixpoint (_,l)) } ->
List.map (fun (((_,id),_,_,_,_),_) -> id) l
| { step = `Cmd (_,_, VernacCoFixpoint (_,l)) } ->
List.map (fun (((_,id),_,_,_),_) -> id) l
| { step = `Cmd (_,_, VernacAssumption (_,_,l)) } ->
List.flatten (List.map (fun (_,(lid,_)) -> List.map snd lid) l)
| { step = `Cmd (_,_, VernacInductive (_,_,l)) } ->
List.map (fun (((_,(_,id)),_,_,_,_),_) -> id) l
| { step = `Cmd (_,_, (VernacDefinition (_,(_,id),DefineBody _) |
VernacDeclareModuleType ((_,id),_,_,_) |
VernacDeclareModule (_,(_,id),_,_) |
VernacDefineModule (_,(_,id),_,_,_))) } -> [id]
| _ -> [] }
history
let backto oid =
assert(not (S.is_empty history));
let rec pop_until_oid () =
let id = (S.top history).id in
if id = initial_state_id || id = oid then ()
else begin ignore (S.pop history); pop_until_oid (); end in
pop_until_oid ();
let backup = S.top history in
VCS.restore backup.vcs;
if backup.id <> oid then anomaly (str "Backto an unknown state")
let branches_of id =
try
let s = S.find (fun n s ->
if s.id = id then `Stop s else `Cont ()) () history in
Vcs_.branches s.vcs
with Not_found -> assert false
let undo_vernac_classifier = function
| VernacResetInitial ->
VtStm (VtBack initial_state_id, true), VtNow
| VernacResetName (_,name) ->
msg_warning
(str"Reset not implemented for automatically generated constants");
(try
let s =
S.find (fun b s ->
if b then `Stop s else `Cont (List.mem name s.label))
false history in
VtStm (VtBack s.id, true), VtNow
with Not_found ->
VtStm (VtBack (S.top history).id, true), VtNow)
| VernacBack n ->
let s = S.find (fun n s ->
if n = 0 then `Stop s else `Cont (n-1)) n history in
VtStm (VtBack s.id, true), VtNow
| VernacUndo n ->
let s = S.find (fun n s ->
if n = 0 then `Stop s else `Cont (n-1)) n history in
VtStm (VtBack s.id, true), VtLater
| VernacUndoTo _
| VernacRestart as e ->
let m = match e with VernacUndoTo m -> m | _ -> 0 in
let vcs = (S.top history).vcs in
let cb, _ =
Vcs_aux.find_proof_at_depth vcs (Vcs_aux.proof_nesting vcs) in
let n = S.find (fun n { vcs } ->
if List.mem cb (Vcs_.branches vcs) then `Cont (n+1) else `Stop n)
0 history in
let s = S.find (fun n s ->
if n = 0 then `Stop s else `Cont (n-1)) (n-m-1) history in
VtStm (VtBack s.id, true), VtLater
| VernacAbortAll ->
let s = S.find (fun () s ->
if List.length (Vcs_.branches s.vcs) = 1 then `Stop s else `Cont ())
() history in
VtStm (VtBack s.id, true), VtLater
| VernacBacktrack (id,_,_)
| VernacBackTo id ->
VtStm (VtBack (Stateid.state_id_of_int id), true), VtNow
| _ -> VtUnknown, VtNow
end (* }}} *)
let init () =
VCS.init initial_state_id;
declare_vernac_classifier "Stm" Backtrack.undo_vernac_classifier;
State.define ~cache:true (fun () -> ()) initial_state_id;
Backtrack.record ()
let observe id =
let vcs = VCS.backup () in
try
Reach.known_state ~cache:(interactive ()) id;
VCS.print ()
with e ->
let e = Errors.push e in
VCS.print ();
VCS.restore vcs;
raise e
let finish () =
observe (VCS.get_branch_pos (VCS.current_branch ()));
VCS.print ()
let join_aborted_proofs () =
let rec aux id =
if id = initial_state_id then () else
let view = VCS.visit id in
match view.step with
| `Qed ((_,DropProof,_),eop) -> observe eop; aux view.next
| `Sideff _ | `Alias _ | `Cmd _ | `Fork _ | `Qed _ -> aux view.next
in
aux (VCS.get_branch_pos VCS.master)
let join () =
finish ();
VCS.print ();
prerr_endline "Joining the environment";
Global.join_safe_environment ();
VCS.print ();
prerr_endline "Joining the aborted proofs";
join_aborted_proofs ();
VCS.print ()
let merge_proof_branch x keep branch =
if branch = VCS.master then
raise(State.exn_on dummy_state_id Proof_global.NoCurrentProof);
let info = VCS.get_branch branch in
VCS.checkout VCS.master;
let id = VCS.new_node () in
VCS.merge id ~ours:(Qed (x,keep,(branch, info))) branch;
VCS.delete_branch branch;
if keep = KeepProof then VCS.propagate_sideff None
let process_transaction verbosely (loc, expr) =
let warn_if_pos a b =
if b then msg_warning(pr_ast a ++ str" should not be part of a script") in
let v, x = expr, (verbosely && Flags.is_verbose(), loc, expr) in
prerr_endline ("{{{ execute: "^ string_of_ppcmds (pr_ast x));
let vcs = VCS.backup () in
try
let head = VCS.current_branch () in
VCS.checkout head;
begin
let c = classify_vernac v in
prerr_endline (" classified as: " ^ string_of_vernac_classification c);
match c with
(* Joining various parts of the document *)
| VtStm (VtJoinDocument, b), VtNow -> warn_if_pos x b; join ()
| VtStm (VtFinish, b), VtNow -> warn_if_pos x b; finish ()
| VtStm (VtObserve id, b), VtNow -> warn_if_pos x b; observe id
| VtStm ((VtObserve _ | VtFinish | VtJoinDocument), _), VtLater ->
anomaly(str"classifier: join actions cannot be classified as VtLater")
(* Back *)
| VtStm (VtBack oid, true), w ->
let id = VCS.new_node () in
let bl = Backtrack.branches_of oid in
List.iter (fun branch ->
if not (List.mem branch bl) then
merge_proof_branch
(false,Loc.ghost,VernacAbortAll) DropProof branch)
(VCS.branches ());
VCS.checkout_shallowest_proof_branch ();
VCS.commit id (Alias oid);
Backtrack.record (); if w = VtNow then finish ()
| VtStm (VtBack id, false), VtNow ->
prerr_endline ("undo to state " ^ string_of_state_id id);
Backtrack.backto id;
VCS.checkout_shallowest_proof_branch ();
Reach.known_state ~cache:(interactive ()) id;
| VtStm (VtBack id, false), VtLater ->
anomaly(str"classifier: VtBack + VtLater must imply part_of_script")
(* Query *)
| VtQuery false, VtNow ->
finish ();
(try Future.purify (interp dummy_state_id) (true,loc,expr)
with e when Errors.noncritical e ->
let e = Errors.push e in
raise(State.exn_on dummy_state_id e))
| VtQuery true, w ->
let id = VCS.new_node () in
VCS.commit id (Cmd x);
Backtrack.record (); if w = VtNow then finish ()
| VtQuery false, VtLater ->
anomaly(str"classifier: VtQuery + VtLater must imply part_of_script")
(* Proof *)
| VtStartProof (mode, names), w ->
let id = VCS.new_node () in
let bname = VCS.mk_branch_name x in
VCS.checkout VCS.master;
VCS.commit id (Fork (x, bname, names));
VCS.branch bname (`Proof (mode, VCS.proof_nesting () + 1));
Proof_global.activate_proof_mode mode;
Backtrack.record (); if w = VtNow then finish ()
| VtProofStep, w ->
let id = VCS.new_node () in
VCS.commit id (Cmd x);
Backtrack.record (); if w = VtNow then finish ()
| VtQed keep, w ->
merge_proof_branch x keep head;
VCS.checkout_shallowest_proof_branch ();
Backtrack.record (); if w = VtNow then finish ()
(* Side effect on all branches *)
| VtSideff, w ->
let id = VCS.new_node () in
VCS.checkout VCS.master;
VCS.commit id (Cmd x);
VCS.propagate_sideff (Some x);
VCS.checkout_shallowest_proof_branch ();
Backtrack.record (); if w = VtNow then finish ()
(* Unknown: we execute it, check for open goals and propagate sideeff *)
| VtUnknown, VtNow ->
let id = VCS.new_node () in
let step () =
VCS.checkout VCS.master;
let mid = VCS.get_branch_pos VCS.master in
Reach.known_state ~cache:(interactive ()) mid;
interp id x;
(* Vernac x may or may not start a proof *)
if head = VCS.master &&
Proof_global.there_are_pending_proofs ()
then begin
let bname = VCS.mk_branch_name x in
VCS.commit id (Fork (x,bname,[]));
VCS.branch bname (`Proof ("Classic", VCS.proof_nesting () + 1))
end else begin
VCS.commit id (Cmd x);
VCS.propagate_sideff (Some x);
VCS.checkout_shallowest_proof_branch ();
end in
State.define ~cache:true step id;
Backtrack.record ()
| VtUnknown, VtLater ->
anomaly(str"classifier: VtUnknown must imply VtNow")
end;
prerr_endline "executed }}}";
VCS.print ()
with e ->
match Stateid.get_state_id e with
| None ->
VCS.restore vcs;
VCS.print ();
anomaly (str ("execute: "^
string_of_ppcmds (Errors.print_no_report e) ^ "}}}"))
| Some (_, id) ->
let e = Errors.push e in
prerr_endline ("Failed at state " ^ Stateid.string_of_state_id id);
VCS.restore vcs;
VCS.print ();
raise e
(* Query API *)
let get_current_state () = Backtrack.cur ()
let current_proof_depth () =
let head = VCS.current_branch () in
match VCS.get_branch head with
| { VCS.kind = `Master } -> 0
| { VCS.pos = cur; VCS.kind = `Proof (_,n); VCS.root = root } ->
let rec distance cur =
if cur = root then 0
else 1 + distance (VCS.visit cur).next in
distance cur
let unmangle n =
let n = VCS.string_of_branch_name n in
let idx = String.index n '_' + 1 in
Names.id_of_string (String.sub n idx (String.length n - idx))
let proofname b = match VCS.get_branch b with
| { VCS.kind = `Proof _ } -> Some b
| _ -> None
let get_all_proof_names () =
List.map unmangle (List.map_filter proofname (VCS.branches ()))
let get_current_proof_name () =
Option.map unmangle (proofname (VCS.current_branch ()))
let get_script prf =
let rec find acc id =
if id = initial_state_id || id = dummy_state_id then acc else
let view = VCS.visit id in
match view.step with
| `Fork (_,_,ns) when List.mem prf ns -> acc
| `Qed ((x,_,_), proof) -> find [pi3 x, (VCS.get_info id).n_goals] proof
| `Sideff (`Ast (x,id)) -> find ((pi3 x, (VCS.get_info id).n_goals)::acc) id
| `Sideff (`Id id) -> find acc id
| `Cmd x -> find ((pi3 x, (VCS.get_info id).n_goals)::acc) view.next
| `Alias id -> find acc id
| `Fork _ -> find acc view.next
in
find [] (VCS.get_branch_pos VCS.master)
(* indentation code for Show Script, initially contributed
by D. de Rauglaudre *)
let indent_script_item ((ng1,ngl1),nl,beginend,ppl) (cmd,ng) =
(* ng1 : number of goals remaining at the current level (before cmd)
ngl1 : stack of previous levels with their remaining goals
ng : number of goals after the execution of cmd
beginend : special indentation stack for { } *)
let ngprev = List.fold_left (+) ng1 ngl1 in
let new_ngl =
if ng > ngprev then
(* We've branched *)
(ng - ngprev + 1, ng1 - 1 :: ngl1)
else if ng < ngprev then
(* A subgoal have been solved. Let's compute the new current level
by discarding all levels with 0 remaining goals. *)
let _ = assert (Int.equal ng (ngprev - 1)) in
let rec loop = function
| (0, ng2::ngl2) -> loop (ng2,ngl2)
| p -> p
in loop (ng1-1, ngl1)
else
(* Standard case, same goal number as before *)
(ng1, ngl1)
in
(* When a subgoal have been solved, separate this block by an empty line *)
let new_nl = (ng < ngprev)
in
(* Indentation depth *)
let ind = List.length ngl1
in
(* Some special handling of bullets and { }, to get a nicer display *)
let pred n = max 0 (n-1) in
let ind, nl, new_beginend = match cmd with
| VernacSubproof _ -> pred ind, nl, (pred ind)::beginend
| VernacEndSubproof -> List.hd beginend, false, List.tl beginend
| VernacBullet _ -> pred ind, nl, beginend
| _ -> ind, nl, beginend
in
let pp =
(if nl then fnl () else mt ()) ++
(hov (ind+1) (str (String.make ind ' ') ++ Ppvernac.pr_vernac cmd))
in
(new_ngl, new_nl, new_beginend, pp :: ppl)
let show_script ?proof () =
try
let prf =
match proof with
| None -> Pfedit.get_current_proof_name ()
| Some (id,_) -> id in
let cmds = get_script prf in
let _,_,_,indented_cmds =
List.fold_left indent_script_item ((1,[]),false,[],[]) cmds
in
let indented_cmds = List.rev (indented_cmds) in
msg_notice (v 0 (Pp.prlist_with_sep Pp.fnl (fun x -> x) indented_cmds))
with Proof_global.NoCurrentProof -> ()
let () = Vernacentries.show_script := show_script
(* vim:set foldmethod=marker: *)
|