1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open CErrors
open Util
open Pp
open Flags
open Libobject
open System
(* Code to hook Coq into the ML toplevel -- depends on having the
objective-caml compiler mostly visible. The functions implemented here are:
\begin{itemize}
\item [dir_ml_load name]: Loads the ML module fname from the current ML
path.
\item [dir_ml_use]: Directive #use of Ocaml toplevel
\item [add_ml_dir]: Directive #directory of Ocaml toplevel
\end{itemize}
How to build an ML module interface with these functions.
The idea is that the ML directory path is like the Coq directory
path. So we can maintain the two in parallel.
In the same way, we can use the "ml_env" as a kind of ML
environment, which we freeze, unfreeze, and add things to just like
to the other environments.
Finally, we can create an object which is an ML module, and require
that the "caching" of the ML module cause the loading of the
associated ML file, if that file has not been yet loaded. Of
course, the problem is how to record dependencies between ML
modules.
(I do not know of a solution to this problem, other than to
put all the needed names into the ML Module object.) *)
(* NB: this module relies on OCaml's Dynlink library. The bytecode version
of Dynlink is always available, but there are some architectures
with native compilation and no dynlink.cmxa. Instead of nasty IFDEF's
here for hiding the calls to Dynlink, we now simply reject this rather
rare situation during ./configure, and give instructions there about how
to build a dummy dynlink.cmxa, cf. dev/dynlink.ml. *)
(* This path is where we look for .cmo *)
let coq_mlpath_copy = ref ["."]
let keep_copy_mlpath path =
let cpath = CUnix.canonical_path_name path in
let filter path' = not (String.equal cpath (CUnix.canonical_path_name path'))
in
coq_mlpath_copy := path :: List.filter filter !coq_mlpath_copy
(* If there is a toplevel under Coq *)
type toplevel = {
load_obj : string -> unit;
use_file : string -> unit;
add_dir : string -> unit;
ml_loop : unit -> unit }
(* Determines the behaviour of Coq with respect to ML files (compiled
or not) *)
type kind_load =
| WithTop of toplevel
| WithoutTop
(* Must be always initialized *)
let load = ref WithoutTop
(* Are we in a native version of Coq? *)
let is_native = Dynlink.is_native
(* Sets and initializes a toplevel (if any) *)
let set_top toplevel = load :=
WithTop toplevel;
Nativelib.load_obj := toplevel.load_obj
(* Removes the toplevel (if any) *)
let remove () =
load := WithoutTop;
Nativelib.load_obj := (fun x -> () : string -> unit)
(* Tests if an Ocaml toplevel runs under Coq *)
let is_ocaml_top () =
match !load with
| WithTop _ -> true
|_ -> false
(* Tests if we can load ML files *)
let has_dynlink = Coq_config.has_natdynlink || not is_native
(* Runs the toplevel loop of Ocaml *)
let ocaml_toploop () =
match !load with
| WithTop t -> Printexc.catch t.ml_loop ()
| _ -> ()
(* Try to interpret load_obj's (internal) errors *)
let report_on_load_obj_error exc =
let x = Obj.repr exc in
(* Try an horrible (fragile) hack to report on Symtable dynlink errors *)
(* (we follow ocaml's Printexc.to_string decoding of exceptions) *)
if Obj.is_block x && String.equal (Obj.magic (Obj.field (Obj.field x 0) 0)) "Symtable.Error"
then
let err_block = Obj.field x 1 in
if Int.equal (Obj.tag err_block) 0 then
(* Symtable.Undefined_global of string *)
str "reference to undefined global " ++
str (Obj.magic (Obj.field err_block 0))
else str (Printexc.to_string exc)
else str (Printexc.to_string exc)
(* Dynamic loading of .cmo/.cma *)
let ml_load s =
match !load with
| WithTop t ->
(try t.load_obj s; s
with
| e when CErrors.noncritical e ->
let e = CErrors.push e in
match fst e with
| (UserError _ | Failure _ | Not_found as u) -> Exninfo.iraise (u, snd e)
| exc ->
let msg = report_on_load_obj_error exc in
errorlabstrm "Mltop.load_object" (str"Cannot link ml-object " ++
str s ++ str" to Coq code (" ++ msg ++ str ")."))
| WithoutTop ->
try
Dynlink.loadfile s; s
with Dynlink.Error a ->
errorlabstrm "Mltop.load_object"
(strbrk "while loading " ++ str s ++
strbrk ": " ++ str (Dynlink.error_message a))
let dir_ml_load s =
match !load with
| WithTop _ -> ml_load s
| WithoutTop ->
let warn = Flags.is_verbose() in
let _,gname = find_file_in_path ~warn !coq_mlpath_copy s in
ml_load gname
(* Dynamic interpretation of .ml *)
let dir_ml_use s =
match !load with
| WithTop t -> t.use_file s
| _ ->
let moreinfo =
if Dynlink.is_native then " Loading ML code works only in bytecode."
else ""
in
errorlabstrm "Mltop.dir_ml_use" (str "Could not load ML code." ++ str moreinfo)
(* Adds a path to the ML paths *)
let add_ml_dir s =
match !load with
| WithTop t -> t.add_dir s; keep_copy_mlpath s
| WithoutTop when has_dynlink -> keep_copy_mlpath s
| _ -> ()
(* For Rec Add ML Path (-R) *)
let add_rec_ml_dir unix_path =
List.iter (fun (lp,_) -> add_ml_dir lp) (all_subdirs ~unix_path)
(* Adding files to Coq and ML loadpath *)
let warn_cannot_use_directory =
CWarnings.create ~name:"cannot-use-directory" ~category:"filesystem"
(fun d ->
str "Directory " ++ str d ++
strbrk " cannot be used as a Coq identifier (skipped)")
let convert_string d =
try Names.Id.of_string d
with UserError _ ->
warn_cannot_use_directory d;
raise Exit
let warn_cannot_open_path =
CWarnings.create ~name:"cannot-open-path" ~category:"filesystem"
(fun unix_path -> str "Cannot open " ++ str unix_path)
let add_rec_path ~unix_path ~coq_root ~implicit =
if exists_dir unix_path then
let dirs = all_subdirs ~unix_path in
let prefix = Names.DirPath.repr coq_root in
let convert_dirs (lp, cp) =
try
let path = List.rev_map convert_string cp @ prefix in
Some (lp, Names.DirPath.make path)
with Exit -> None
in
let dirs = List.map_filter convert_dirs dirs in
let () = add_ml_dir unix_path in
let add (path, dir) =
Loadpath.add_load_path path ~implicit dir in
let () = List.iter add dirs in
Loadpath.add_load_path unix_path ~implicit coq_root
else
warn_cannot_open_path unix_path
(* convertit un nom quelconque en nom de fichier ou de module *)
let mod_of_name name =
if Filename.check_suffix name ".cmo" then
Filename.chop_suffix name ".cmo"
else
name
let get_ml_object_suffix name =
if Filename.check_suffix name ".cmo" then
Some ".cmo"
else if Filename.check_suffix name ".cma" then
Some ".cma"
else if Filename.check_suffix name ".cmxs" then
Some ".cmxs"
else
None
let file_of_name name =
let suffix = get_ml_object_suffix name in
let fail s =
errorlabstrm "Mltop.load_object"
(str"File not found on loadpath : " ++ str s ++ str"\n" ++
str"Loadpath: " ++ str(String.concat ":" !coq_mlpath_copy)) in
if not (Filename.is_relative name) then
if Sys.file_exists name then name else fail name
else if is_native then
let name = match suffix with
| Some ((".cmo"|".cma") as suffix) ->
(Filename.chop_suffix name suffix) ^ ".cmxs"
| Some ".cmxs" -> name
| _ -> name ^ ".cmxs"
in
if is_in_path !coq_mlpath_copy name then name else fail name
else
let (full, base) = match suffix with
| Some ".cmo" | Some ".cma" -> true, name
| Some ".cmxs" -> false, Filename.chop_suffix name ".cmxs"
| _ -> false, name
in
if full then
if is_in_path !coq_mlpath_copy base then base else fail base
else
let name = base ^ ".cma" in
if is_in_path !coq_mlpath_copy name then name else
let name = base ^ ".cmo" in
if is_in_path !coq_mlpath_copy name then name else
fail (base ^ ".cm[ao]")
(** Is the ML code of the standard library placed into loadable plugins
or statically compiled into coqtop ? For the moment this choice is
made according to the presence of native dynlink : even if bytecode
coqtop could always load plugins, we prefer to have uniformity between
bytecode and native versions. *)
(* [known_loaded_module] contains the names of the loaded ML modules
* (linked or loaded with load_object). It is used not to load a
* module twice. It is NOT the list of ML modules Coq knows. *)
let known_loaded_modules = ref String.Map.empty
let add_known_module mname path =
if not (String.Map.mem mname !known_loaded_modules) ||
String.Map.find mname !known_loaded_modules = None then
known_loaded_modules := String.Map.add mname path !known_loaded_modules
let module_is_known mname =
String.Map.mem mname !known_loaded_modules
let known_module_path mname =
String.Map.find mname !known_loaded_modules
(** A plugin is just an ML module with an initialization function. *)
let known_loaded_plugins = ref String.Map.empty
let add_known_plugin init name =
add_known_module name None;
known_loaded_plugins := String.Map.add name init !known_loaded_plugins
let init_known_plugins () =
String.Map.iter (fun _ f -> f()) !known_loaded_plugins
(** Registering functions to be used at caching time, that is when the Declare
ML module command is issued. *)
let cache_objs = ref String.Map.empty
let declare_cache_obj f name =
let objs = try String.Map.find name !cache_objs with Not_found -> [] in
let objs = f :: objs in
cache_objs := String.Map.add name objs !cache_objs
let perform_cache_obj name =
let objs = try String.Map.find name !cache_objs with Not_found -> [] in
let objs = List.rev objs in
List.iter (fun f -> f ()) objs
(** ml object = ml module or plugin *)
let init_ml_object mname =
try String.Map.find mname !known_loaded_plugins ()
with Not_found -> ()
let load_ml_object mname ?path fname=
let path = match path with
| None -> dir_ml_load fname
| Some p -> ml_load p in
add_known_module mname (Some path);
init_ml_object mname;
path
let dir_ml_load m = ignore(dir_ml_load m)
let add_known_module m = add_known_module m None
let load_ml_object_raw fname = dir_ml_load (file_of_name fname)
let load_ml_objects_raw_rex rex =
List.iter (fun (_,fp) ->
let name = file_of_name (Filename.basename fp) in
try dir_ml_load name
with e -> prerr_endline (Printexc.to_string e))
(System.where_in_path_rex !coq_mlpath_copy rex)
(* Summary of declared ML Modules *)
(* List and not String.Set because order is important: most recent first. *)
let loaded_modules = ref []
let get_loaded_modules () = List.rev !loaded_modules
let add_loaded_module md path =
if not (List.mem_assoc md !loaded_modules) then
loaded_modules := (md,path) :: !loaded_modules
let reset_loaded_modules () = loaded_modules := []
let if_verbose_load verb f name ?path fname =
if not verb then f name ?path fname
else
let info = str "[Loading ML file " ++ str fname ++ str " ..." in
try
let path = f name ?path fname in
Feedback.msg_info (info ++ str " done]");
path
with reraise ->
Feedback.msg_info (info ++ str " failed]");
raise reraise
(** Load a module for the first time (i.e. dynlink it)
or simulate its reload (i.e. doing nothing except maybe
an initialization function). *)
let trigger_ml_object verb cache reinit ?path name =
if module_is_known name then begin
if reinit then init_ml_object name;
add_loaded_module name (known_module_path name);
if cache then perform_cache_obj name
end else if not has_dynlink then
errorlabstrm "Mltop.trigger_ml_object"
(str "Dynamic link not supported (module " ++ str name ++ str ")")
else begin
let file = file_of_name (Option.default name path) in
let path =
if_verbose_load (verb && is_verbose ()) load_ml_object name ?path file in
add_loaded_module name (Some path);
if cache then perform_cache_obj name
end
let load_ml_object n m = ignore(load_ml_object n m)
let unfreeze_ml_modules x =
reset_loaded_modules ();
List.iter
(fun (name,path) -> trigger_ml_object false false false ?path name) x
let _ =
Summary.declare_summary Summary.ml_modules
{ Summary.freeze_function = (fun _ -> get_loaded_modules ());
Summary.unfreeze_function = unfreeze_ml_modules;
Summary.init_function = reset_loaded_modules }
(* Liboject entries of declared ML Modules *)
type ml_module_object = {
mlocal : Vernacexpr.locality_flag;
mnames : string list
}
let cache_ml_objects (_,{mnames=mnames}) =
let iter obj = trigger_ml_object true true true obj in
List.iter iter mnames
let load_ml_objects _ (_,{mnames=mnames}) =
let iter obj = trigger_ml_object true false true obj in
List.iter iter mnames
let classify_ml_objects ({mlocal=mlocal} as o) =
if mlocal then Dispose else Substitute o
let inMLModule : ml_module_object -> obj =
declare_object
{(default_object "ML-MODULE") with
cache_function = cache_ml_objects;
load_function = load_ml_objects;
subst_function = (fun (_,o) -> o);
classify_function = classify_ml_objects }
let declare_ml_modules local l =
let l = List.map mod_of_name l in
Lib.add_anonymous_leaf (inMLModule {mlocal=local; mnames=l})
let print_ml_path () =
let l = !coq_mlpath_copy in
str"ML Load Path:" ++ fnl () ++ str" " ++
hv 0 (prlist_with_sep fnl str l)
(* Printing of loaded ML modules *)
let print_ml_modules () =
let l = get_loaded_modules () in
str"Loaded ML Modules: " ++ pr_vertical_list str (List.map fst l)
let print_gc () =
let stat = Gc.stat () in
let msg =
str "minor words: " ++ real stat.Gc.minor_words ++ fnl () ++
str "promoted words: " ++ real stat.Gc.promoted_words ++ fnl () ++
str "major words: " ++ real stat.Gc.major_words ++ fnl () ++
str "minor_collections: " ++ int stat.Gc.minor_collections ++ fnl () ++
str "major_collections: " ++ int stat.Gc.major_collections ++ fnl () ++
str "heap_words: " ++ int stat.Gc.heap_words ++ fnl () ++
str "heap_chunks: " ++ int stat.Gc.heap_chunks ++ fnl () ++
str "live_words: " ++ int stat.Gc.live_words ++ fnl () ++
str "live_blocks: " ++ int stat.Gc.live_blocks ++ fnl () ++
str "free_words: " ++ int stat.Gc.free_words ++ fnl () ++
str "free_blocks: " ++ int stat.Gc.free_blocks ++ fnl () ++
str "largest_free: " ++ int stat.Gc.largest_free ++ fnl () ++
str "fragments: " ++ int stat.Gc.fragments ++ fnl () ++
str "compactions: " ++ int stat.Gc.compactions ++ fnl () ++
str "top_heap_words: " ++ int stat.Gc.top_heap_words ++ fnl () ++
str "stack_size: " ++ int stat.Gc.stack_size
in
hv 0 msg
|