1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Hugo Herbelin from contents related to lemma proofs in
file command.ml, Aug 2009 *)
open Errors
open Util
open Flags
open Pp
open Names
open Term
open Declarations
open Declareops
open Entries
open Environ
open Nameops
open Globnames
open Decls
open Decl_kinds
open Declare
open Pretyping
open Termops
open Namegen
open Evarutil
open Reductionops
open Constrexpr
open Constrintern
open Impargs
open Tacticals
(* Support for mutually proved theorems *)
let retrieve_first_recthm = function
| VarRef id ->
(pi2 (Global.lookup_named id),variable_opacity id)
| ConstRef cst ->
let cb = Global.lookup_constant cst in
(body_of_constant cb, is_opaque cb)
| _ -> assert false
let adjust_guardness_conditions const = function
| [] -> const (* Not a recursive statement *)
| possible_indexes ->
(* Try all combinations... not optimal *)
let env = Global.env() in
{ const with const_entry_body =
Future.chain ~greedy:true ~pure:true const.const_entry_body
(fun (body, eff) ->
match kind_of_term body with
| Fix ((nv,0),(_,_,fixdefs as fixdecls)) ->
(* let possible_indexes =
List.map2 (fun i c -> match i with Some i -> i | None ->
List.interval 0 (List.length ((lam_assum c))))
lemma_guard (Array.to_list fixdefs) in
*)
let indexes =
search_guard Loc.ghost env
possible_indexes fixdecls in
mkFix ((indexes,0),fixdecls), eff
| _ -> body, eff) }
let find_mutually_recursive_statements thms =
let n = List.length thms in
let inds = List.map (fun (id,(t,impls,annot)) ->
let (hyps,ccl) = decompose_prod_assum t in
let x = (id,(t,impls)) in
match annot with
(* Explicit fixpoint decreasing argument is given *)
| Some (Some (_,id),CStructRec) ->
let i,b,typ = lookup_rel_id id hyps in
(match kind_of_term t with
| Ind (kn,_ as ind) when
let mind = Global.lookup_mind kn in
mind.mind_finite && Option.is_empty b ->
[ind,x,i],[]
| _ ->
error "Decreasing argument is not an inductive assumption.")
(* Unsupported cases *)
| Some (_,(CWfRec _|CMeasureRec _)) ->
error "Only structural decreasing is supported for mutual statements."
(* Cofixpoint or fixpoint w/o explicit decreasing argument *)
| None | Some (None, CStructRec) ->
let whnf_hyp_hds = map_rel_context_in_env
(fun env c -> fst (whd_betadeltaiota_stack env Evd.empty c))
(Global.env()) hyps in
let ind_hyps =
List.flatten (List.map_i (fun i (_,b,t) ->
match kind_of_term t with
| Ind (kn,_ as ind) when
let mind = Global.lookup_mind kn in
mind.mind_finite && Option.is_empty b ->
[ind,x,i]
| _ ->
[]) 0 (List.rev whnf_hyp_hds)) in
let ind_ccl =
let cclenv = push_rel_context hyps (Global.env()) in
let whnf_ccl,_ = whd_betadeltaiota_stack cclenv Evd.empty ccl in
match kind_of_term whnf_ccl with
| Ind (kn,_ as ind) when
let mind = Global.lookup_mind kn in
Int.equal mind.mind_ntypes n && not mind.mind_finite ->
[ind,x,0]
| _ ->
[] in
ind_hyps,ind_ccl) thms in
let inds_hyps,ind_ccls = List.split inds in
let of_same_mutind ((kn,_),_,_) = function ((kn',_),_,_) -> eq_mind kn kn' in
(* Check if all conclusions are coinductive in the same type *)
(* (degenerated cartesian product since there is at most one coind ccl) *)
let same_indccl =
List.cartesians_filter (fun hyp oks ->
if List.for_all (of_same_mutind hyp) oks
then Some (hyp::oks) else None) [] ind_ccls in
let ordered_same_indccl =
List.filter (List.for_all_i (fun i ((kn,j),_,_) -> Int.equal i j) 0) same_indccl in
(* Check if some hypotheses are inductive in the same type *)
let common_same_indhyp =
List.cartesians_filter (fun hyp oks ->
if List.for_all (of_same_mutind hyp) oks
then Some (hyp::oks) else None) [] inds_hyps in
let ordered_inds,finite,guard =
match ordered_same_indccl, common_same_indhyp with
| indccl::rest, _ ->
assert (List.is_empty rest);
(* One occ. of common coind ccls and no common inductive hyps *)
if not (List.is_empty common_same_indhyp) then
if_verbose msg_info (str "Assuming mutual coinductive statements.");
flush_all ();
indccl, true, []
| [], _::_ ->
let () = match same_indccl with
| ind :: _ ->
if List.distinct_f ind_ord (List.map pi1 ind)
then
if_verbose msg_info
(strbrk
("Coinductive statements do not follow the order of "^
"definition, assuming the proof to be by induction."));
flush_all ()
| _ -> ()
in
let possible_guards = List.map (List.map pi3) inds_hyps in
(* assume the largest indices as possible *)
List.last common_same_indhyp, false, possible_guards
| _, [] ->
error
("Cannot find common (mutual) inductive premises or coinductive" ^
" conclusions in the statements.")
in
(finite,guard,None), ordered_inds
let look_for_possibly_mutual_statements = function
| [id,(t,impls,None)] ->
(* One non recursively proved theorem *)
None,[id,(t,impls)],None
| _::_ as thms ->
(* More than one statement and/or an explicit decreasing mark: *)
(* we look for a common inductive hyp or a common coinductive conclusion *)
let recguard,ordered_inds = find_mutually_recursive_statements thms in
let thms = List.map pi2 ordered_inds in
Some recguard,thms, Some (List.map (fun (_,_,i) -> succ i) ordered_inds)
| [] -> anomaly (Pp.str "Empty list of theorems.")
(* Saving a goal *)
let save id const do_guard (locality,kind) hook =
let const = adjust_guardness_conditions const do_guard in
let k = Kindops.logical_kind_of_goal_kind kind in
let l,r = match locality with
| Discharge when Lib.sections_are_opened () ->
let c = SectionLocalDef const in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Local, VarRef id)
| Local | Global | Discharge ->
let local = match locality with
| Local | Discharge -> true
| Global -> false
in
let kn = declare_constant id ~local (DefinitionEntry const, k) in
Autoinstance.search_declaration (ConstRef kn);
(locality, ConstRef kn) in
definition_message id;
hook l r
let default_thm_id = Id.of_string "Unnamed_thm"
let compute_proof_name locality = function
| Some (loc,id) ->
(* We check existence here: it's a bit late at Qed time *)
if Nametab.exists_cci (Lib.make_path id) || is_section_variable id ||
locality == Global && Nametab.exists_cci (Lib.make_path_except_section id)
then
user_err_loc (loc,"",pr_id id ++ str " already exists.");
id
| None ->
next_global_ident_away default_thm_id (Pfedit.get_all_proof_names ())
let save_remaining_recthms (locality,kind) body opaq i (id,(t_i,(_,imps))) =
match body with
| None ->
(match locality with
| Discharge ->
let impl = false in (* copy values from Vernacentries *)
let k = IsAssumption Conjectural in
let c = SectionLocalAssum (t_i,impl) in
let _ = declare_variable id (Lib.cwd(),c,k) in
(Discharge, VarRef id,imps)
| Local | Global ->
let k = IsAssumption Conjectural in
let local = match locality with
| Local -> true
| Global -> false
| Discharge -> assert false
in
let decl = (ParameterEntry (None,t_i,None), k) in
let kn = declare_constant id ~local decl in
(locality,ConstRef kn,imps))
| Some body ->
let k = Kindops.logical_kind_of_goal_kind kind in
let body_i = match kind_of_term body with
| Fix ((nv,0),decls) -> mkFix ((nv,i),decls)
| CoFix (0,decls) -> mkCoFix (i,decls)
| _ -> anomaly (Pp.str "Not a proof by induction") in
match locality with
| Discharge ->
let const = { const_entry_body =
Future.from_val (body_i,Declareops.no_seff);
const_entry_secctx = None;
const_entry_type = Some t_i;
const_entry_opaque = opaq;
const_entry_inline_code = false;
const_entry_feedback = None;
} in
let c = SectionLocalDef const in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Discharge,VarRef id,imps)
| Local | Global ->
let local = match locality with
| Local -> true
| Global -> false
| Discharge -> assert false
in
let const = { const_entry_body =
Future.from_val (body_i,Declareops.no_seff);
const_entry_secctx = None;
const_entry_type = Some t_i;
const_entry_opaque = opaq;
const_entry_inline_code = false;
const_entry_feedback = None;
} in
let kn = declare_constant id ~local (DefinitionEntry const, k) in
(locality,ConstRef kn,imps)
let save_hook = ref ignore
let set_save_hook f = save_hook := f
let save_named proof =
let id,const,do_guard,persistence,hook = proof in
save id const do_guard persistence hook
let check_anonymity id save_ident =
if not (String.equal (atompart_of_id id) (Id.to_string (default_thm_id))) then
error "This command can only be used for unnamed theorem."
let save_anonymous proof save_ident =
let id,const,do_guard,persistence,hook = proof in
check_anonymity id save_ident;
save save_ident const do_guard persistence hook
let save_anonymous_with_strength proof kind save_ident =
let id,const,do_guard,_,hook = proof in
check_anonymity id save_ident;
(* we consider that non opaque behaves as local for discharge *)
save save_ident const do_guard (Global, Proof kind) hook
(* Admitted *)
let admit hook () =
let (id,k,typ) = Pfedit.current_proof_statement () in
let e = Pfedit.get_used_variables(), typ, None in
let kn = declare_constant id (ParameterEntry e,IsAssumption Conjectural) in
let () = match fst k with
| Global -> ()
| Local | Discharge ->
msg_warning (str "Let definition" ++ spc () ++ pr_id id ++ spc () ++
str "declared as an axiom.")
in
let () = assumption_message id in
hook Global (ConstRef kn)
(* Starting a goal *)
let start_hook = ref ignore
let set_start_hook = (:=) start_hook
let get_proof proof do_guard hook opacity =
let (id,(const,persistence)) =
Pfedit.cook_this_proof proof
in
id,{const with const_entry_opaque = opacity},do_guard,persistence,hook
let standard_proof_terminator compute_guard hook =
let open Proof_global in function
| Admitted ->
admit hook ();
Pp.feedback Interface.AddedAxiom
| Proved (is_opaque,idopt,proof) ->
let proof = get_proof proof compute_guard hook is_opaque in
begin match idopt with
| None -> save_named proof
| Some ((_,id),None) -> save_anonymous proof id
| Some ((_,id),Some kind) ->
save_anonymous_with_strength proof kind id
end
let start_proof id kind ?sign c ?init_tac ?(compute_guard=[]) hook =
let terminator = standard_proof_terminator compute_guard hook in
let sign =
match sign with
| Some sign -> sign
| None -> initialize_named_context_for_proof ()
in
!start_hook c;
Pfedit.start_proof id kind sign c ?init_tac terminator
let rec_tac_initializer finite guard thms snl =
if finite then
match List.map (fun (id,(t,_)) -> (id,t)) thms with
| (id,_)::l -> Tactics.mutual_cofix id l 0
| _ -> assert false
else
(* nl is dummy: it will be recomputed at Qed-time *)
let nl = match snl with
| None -> List.map succ (List.map List.last guard)
| Some nl -> nl
in match List.map2 (fun (id,(t,_)) n -> (id,n,t)) thms nl with
| (id,n,_)::l -> Tactics.mutual_fix id n l 0
| _ -> assert false
let start_proof_with_initialization kind recguard thms snl hook =
let intro_tac (_, (_, (ids, _))) =
Tacticals.New.tclMAP (function
| Name id -> Tactics.intro_mustbe_force id
| Anonymous -> Tactics.intro) (List.rev ids) in
let init_tac,guard = match recguard with
| Some (finite,guard,init_tac) ->
let rec_tac = Proofview.V82.tactic (rec_tac_initializer finite guard thms snl) in
Some (match init_tac with
| None ->
if Flags.is_auto_intros () then
Tacticals.New.tclTHENS rec_tac (List.map intro_tac thms)
else
rec_tac
| Some tacl ->
Tacticals.New.tclTHENS rec_tac
(if Flags.is_auto_intros () then
List.map2 (fun tac thm -> Tacticals.New.tclTHEN tac (intro_tac thm)) tacl thms
else
tacl)),guard
| None ->
let () = match thms with [_] -> () | _ -> assert false in
(if Flags.is_auto_intros () then Some (intro_tac (List.hd thms)) else None), [] in
match thms with
| [] -> anomaly (Pp.str "No proof to start")
| (id,(t,(_,imps)))::other_thms ->
let hook strength ref =
let other_thms_data =
if List.is_empty other_thms then [] else
(* there are several theorems defined mutually *)
let body,opaq = retrieve_first_recthm ref in
List.map_i (save_remaining_recthms kind body opaq) 1 other_thms in
let thms_data = (strength,ref,imps)::other_thms_data in
List.iter (fun (strength,ref,imps) ->
maybe_declare_manual_implicits false ref imps;
hook strength ref) thms_data in
start_proof id kind t ?init_tac hook ~compute_guard:guard
let start_proof_com kind thms hook =
let evdref = ref Evd.empty in
let env0 = Global.env () in
let thms = List.map (fun (sopt,(bl,t,guard)) ->
let impls, ((env, ctx), imps) = interp_context_evars evdref env0 bl in
let t', imps' = interp_type_evars_impls ~impls evdref env t in
check_evars_are_solved env Evd.empty !evdref;
let ids = List.map pi1 ctx in
(compute_proof_name (fst kind) sopt,
(nf_evar !evdref (it_mkProd_or_LetIn t' ctx),
(ids, imps @ lift_implicits (List.length ids) imps'),
guard)))
thms in
let recguard,thms,snl = look_for_possibly_mutual_statements thms in
start_proof_with_initialization kind recguard thms snl hook
(* Saving a proof *)
let save_proof ?proof = function
| Vernacexpr.Admitted ->
Proof_global.get_terminator() Proof_global.Admitted
| Vernacexpr.Proved (is_opaque,idopt) ->
let (proof_obj,terminator) =
match proof with
| None -> Proof_global.close_proof (fun x -> x)
| Some proof -> proof
in
(* if the proof is given explicitly, nothing has to be deleted *)
if Option.is_empty proof then Pfedit.delete_current_proof ();
terminator (Proof_global.Proved (is_opaque,idopt,proof_obj))
(* Miscellaneous *)
let get_current_context () =
try Pfedit.get_current_goal_context ()
with e when Logic.catchable_exception e ->
(Evd.empty, Global.env())
|