blob: be49f41e54610144a48033be66540d0aaf1594ff (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Loc
open Pp
open Names
open Term
open Environ
open Libnames
open Glob_term
open Genarg
open Vernacexpr
open Ind_tables
open Misctypes
(** See also Auto_ind_decl, Indrec, Eqscheme, Ind_tables, ... *)
(** Build and register the boolean equalities associated to an inductive type *)
val declare_beq_scheme : mutual_inductive -> unit
val declare_eq_decidability : mutual_inductive -> unit
(** Build and register a congruence scheme for an equality-like inductive type *)
val declare_congr_scheme : inductive -> unit
(** Build and register rewriting schemes for an equality-like inductive type *)
val declare_rewriting_schemes : inductive -> unit
(** Mutual Minimality/Induction scheme *)
val do_mutual_induction_scheme :
(Id.t located * bool * inductive * glob_sort) list -> unit
(** Main calls to interpret the Scheme command *)
val do_scheme : (Id.t located option * scheme) list -> unit
(** Combine a list of schemes into a conjunction of them *)
val build_combined_scheme : env -> constant list -> constr * types
val do_combined_scheme : Id.t located -> Id.t located list -> unit
(** Hook called at each inductive type definition *)
val declare_default_schemes : mutual_inductive -> unit
|