aboutsummaryrefslogtreecommitdiffhomepage
path: root/toplevel/indschemes.ml
blob: 52c9be67514671e83e276c1265759655f1031dd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Created by Hugo Herbelin from contents related to inductive schemes
   initially developed by Christine Paulin (induction schemes), Vincent
   Siles (decidable equality and boolean equality) and Matthieu Sozeau
   (combined scheme) in file command.ml, Sep 2009 *)

(* This file provides entry points for manually or automatically
   declaring new schemes *)

open Pp
open Flags
open Util
open Names
open Declarations
open Entries
open Term
open Inductive
open Decl_kinds
open Indrec
open Declare
open Libnames
open Goptions
open Nameops
open Termops
open Typeops
open Inductiveops
open Pretyping
open Topconstr
open Nametab
open Smartlocate
open Vernacexpr
open Ind_tables
open Auto_ind_decl
open Eqschemes
open Elimschemes

(* Flags governing automatic synthesis of schemes *)

let elim_flag = ref true
let _ =
  declare_bool_option
    { optsync  = true;
      optname  = "automatic declaration of induction schemes";
      optkey   = ["Elimination";"Schemes"];
      optread  = (fun () -> !elim_flag) ;
      optwrite = (fun b -> elim_flag := b) }

let case_flag = ref true
let _ =
  declare_bool_option
    { optsync  = true;
      optname  = "automatic declaration of case analysis schemes";
      optkey   = ["Case";"Analysis";"Schemes"];
      optread  = (fun () -> !case_flag) ;
      optwrite = (fun b -> case_flag := b) }

let eq_flag = ref true
let _ =
  declare_bool_option
    { optsync  = true;
      optname  = "automatic declaration of boolean equality";
      optkey   = ["Boolean";"Equality";"Schemes"];
      optread  = (fun () -> !eq_flag) ;
      optwrite = (fun b -> eq_flag := b) }
let _ = (* compatibility *)
  declare_bool_option
    { optsync  = true;
      optname  = "automatic declaration of boolean equality";
      optkey   = ["Equality";"Scheme"];
      optread  = (fun () -> !eq_flag) ;
      optwrite = (fun b -> eq_flag := b) }

let is_eq_flag () = !eq_flag && Flags.version_strictly_greater Flags.V8_2

let eq_dec_flag = ref false 
let _ =
  declare_bool_option
    { optsync  = true;
      optname  = "automatic declaration of decidable equality";
      optkey   = ["Decidable";"Equality";"Schemes"];
      optread  = (fun () -> !eq_dec_flag) ;
      optwrite = (fun b -> eq_dec_flag := b) }

let rewriting_flag = ref false
let _ =
  declare_bool_option
    { optsync  = true;
      optname  ="automatic declaration of rewriting schemes for equality types";
      optkey   = ["Rewriting";"Schemes"];
      optread  = (fun () -> !rewriting_flag) ;
      optwrite = (fun b -> rewriting_flag := b) }

(* Util *)

let define id internal c t =
  let f = declare_constant ~internal in
  let kn = f id
    (DefinitionEntry
      { const_entry_body = c;
        const_entry_type = t;
        const_entry_opaque = false },
      Decl_kinds.IsDefinition Scheme) in
  definition_message id;
  kn

(* Boolean equality *)

let declare_beq_scheme_gen internal names kn =
  ignore (define_mutual_scheme beq_scheme_kind internal names kn)

let alarm what internal msg =
  let debug = false in
  match internal with
  | KernelVerbose 
  | KernelSilent ->
    (if debug then
      Flags.if_verbose Pp.msg_warning
	(hov 0 msg ++ fnl () ++ what ++ str " not defined."))
  | _ -> errorlabstrm "" msg

let try_declare_scheme what f internal names kn =
  try f internal names kn
  with
    | ParameterWithoutEquality cst ->
	alarm what internal
	  (str "Boolean equality not found for parameter " ++ pr_con cst ++
	   str".")
    | InductiveWithProduct ->
	alarm what internal
	  (str "Unable to decide equality of functional arguments.")
    | InductiveWithSort ->
	alarm what internal
	  (str "Unable to decide equality of type arguments.")
    | NonSingletonProp ind ->
	alarm what internal
	  (str "Cannot extract computational content from proposition " ++
	   quote (Printer.pr_inductive (Global.env()) ind) ++ str ".")
    | EqNotFound (ind',ind) ->
	alarm what internal
	  (str "Boolean equality on " ++
	   quote (Printer.pr_inductive (Global.env()) ind') ++
	   strbrk " is missing.")
    | UndefinedCst s ->
	alarm what internal
	  (strbrk "Required constant " ++ str s ++ str " undefined.")
    | AlreadyDeclared msg ->
        alarm what internal (msg ++ str ".")
    | _ -> 
	alarm what internal
	  (str "Unknown exception during scheme creation.")

let beq_scheme_msg mind =
  let mib = Global.lookup_mind mind in
  (* TODO: mutual inductive case *)
  str "Boolean equality on " ++
    pr_enum (fun ind -> quote (Printer.pr_inductive (Global.env()) ind))
    (list_tabulate (fun i -> (mind,i)) (Array.length mib.mind_packets))

let declare_beq_scheme_with l kn =
  try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen UserVerbose l kn

let try_declare_beq_scheme kn =
  (* TODO: handle Fix, eventually handle
      proof-irrelevance; improve decidability by depending on decidability
      for the parameters rather than on the bl and lb properties *)
  try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen KernelVerbose [] kn

let declare_beq_scheme = declare_beq_scheme_with []

(* Case analysis schemes *)
let declare_one_case_analysis_scheme ind =
  let (mib,mip) = Global.lookup_inductive ind in
  let kind = inductive_sort_family mip in
  let dep = if kind = InProp then case_scheme_kind_from_prop else case_dep_scheme_kind_from_type in
  let kelim = elim_sorts (mib,mip) in
    (* in case the inductive has a type elimination, generates only one
       induction scheme, the other ones share the same code with the
       apropriate type *)
  if List.mem InType kelim then
    ignore (define_individual_scheme dep KernelVerbose None ind)

(* Induction/recursion schemes *)

let kinds_from_prop =
  [InType,rect_scheme_kind_from_prop;
   InProp,ind_scheme_kind_from_prop;
   InSet,rec_scheme_kind_from_prop]

let kinds_from_type =
  [InType,rect_dep_scheme_kind_from_type;
   InProp,ind_dep_scheme_kind_from_type;
   InSet,rec_dep_scheme_kind_from_type]

let declare_one_induction_scheme ind =
  let (mib,mip) = Global.lookup_inductive ind in
  let kind = inductive_sort_family mip in
  let from_prop = kind = InProp in
  let kelim = elim_sorts (mib,mip) in
  let elims =
    list_map_filter (fun (sort,kind) ->
      if List.mem sort kelim then Some kind else None)
      (if from_prop then kinds_from_prop else kinds_from_type) in
  List.iter (fun kind -> ignore (define_individual_scheme kind KernelVerbose None ind))
    elims

let declare_induction_schemes kn =
  let mib = Global.lookup_mind kn in
  if mib.mind_finite then begin
    for i = 0 to Array.length mib.mind_packets - 1 do
      declare_one_induction_scheme (kn,i);
    done;
  end

(* Decidable equality *)

let declare_eq_decidability_gen internal names kn =
  let mib = Global.lookup_mind kn in
  if mib.mind_finite then
    ignore (define_mutual_scheme eq_dec_scheme_kind internal names kn)

let eq_dec_scheme_msg ind = (* TODO: mutual inductive case *)
  str "Decidable equality on " ++ quote (Printer.pr_inductive (Global.env()) ind)

let declare_eq_decidability_scheme_with l kn =
  try_declare_scheme (eq_dec_scheme_msg (kn,0))
    declare_eq_decidability_gen UserVerbose l kn

let try_declare_eq_decidability kn =
  try_declare_scheme (eq_dec_scheme_msg (kn,0))
    declare_eq_decidability_gen KernelVerbose [] kn

let declare_eq_decidability = declare_eq_decidability_scheme_with []

let ignore_error f x = try ignore (f x) with _ -> ()

let declare_rewriting_schemes ind =
  if Hipattern.is_inductive_equality ind then begin
    ignore (define_individual_scheme rew_r2l_scheme_kind KernelVerbose None ind);
    ignore (define_individual_scheme rew_r2l_dep_scheme_kind KernelVerbose None ind);
    ignore (define_individual_scheme rew_r2l_forward_dep_scheme_kind
      KernelVerbose None ind);
    (* These ones expect the equality to be symmetric; the first one also *)
    (* needs eq *)
    ignore_error (define_individual_scheme rew_l2r_scheme_kind KernelVerbose None) ind;
    ignore_error
      (define_individual_scheme rew_l2r_dep_scheme_kind KernelVerbose None) ind;
    ignore_error
      (define_individual_scheme rew_l2r_forward_dep_scheme_kind KernelVerbose None) ind
  end

let declare_congr_scheme ind =
  if Hipattern.is_equality_type (mkInd ind) then begin
    if
      try Coqlib.check_required_library Coqlib.logic_module_name; true
      with _ -> false
    then
      ignore (define_individual_scheme congr_scheme_kind KernelVerbose None ind)
    else
      warning "Cannot build congruence scheme because eq is not found"
  end

let declare_sym_scheme ind =
  if Hipattern.is_inductive_equality ind then
    (* Expect the equality to be symmetric *)
    ignore_error (define_individual_scheme sym_scheme_kind KernelVerbose None) ind

(* Scheme command *)

let rec split_scheme l =
 let env = Global.env() in
 match l with
  | [] -> [],[]
  | (Some id,t)::q -> let l1,l2 = split_scheme q in
    ( match t with
      | InductionScheme (x,y,z) -> ((id,x,smart_global_inductive y,z)::l1),l2
      | CaseScheme (x,y,z) -> ((id,x,smart_global_inductive y,z)::l1),l2
      | EqualityScheme  x -> l1,((Some id,smart_global_inductive x)::l2)
    )
(*
 if no name has been provided, we build one from the types of the ind
requested
*)
  | (None,t)::q ->
      let l1,l2 = split_scheme q in
      let names inds recs x y z =
        let ind = smart_global_inductive y in
        let sort_of_ind = Retyping.get_sort_family_of env Evd.empty (mkInd ind) in
        let z' = family_of_sort (interp_sort z) in
        let suffix = (
          match sort_of_ind with
          | InProp ->
              if x then (match z' with
              | InProp -> inds ^ "_nodep"
              | InSet -> recs ^ "_nodep"
              | InType -> recs ^ "t_nodep")
              else ( match z' with
              | InProp -> inds
              | InSet -> recs
              | InType -> recs ^ "t" )
          | _ ->
              if x then (match z' with
              | InProp -> inds
              | InSet -> recs
              | InType -> recs ^ "t" )
              else (match z' with
              | InProp -> inds ^ "_dep"
              | InSet  -> recs ^ "_dep"
              | InType -> recs ^ "t_dep")
        ) in
        let newid = add_suffix (basename_of_global (IndRef ind)) suffix in
        let newref = (dummy_loc,newid) in
          ((newref,x,ind,z)::l1),l2
      in
	match t with
	| CaseScheme (x,y,z) -> names "_case" "_case" x y z
	| InductionScheme (x,y,z) -> names "_ind" "_rec" x y z
	| EqualityScheme  x -> l1,((None,smart_global_inductive x)::l2)
	    

let do_mutual_induction_scheme lnamedepindsort =
  let lrecnames = List.map (fun ((_,f),_,_,_) -> f) lnamedepindsort
  and sigma = Evd.empty
  and env0 = Global.env() in
  let lrecspec =
    List.map
      (fun (_,dep,ind,sort) -> (ind,dep,interp_elimination_sort sort))
      lnamedepindsort
  in
  let listdecl = Indrec.build_mutual_induction_scheme env0 sigma lrecspec in
  let rec declare decl fi lrecref =
    let decltype = Retyping.get_type_of env0 Evd.empty decl in
    let decltype = refresh_universes decltype in
    let cst = define fi UserVerbose decl (Some decltype) in
    ConstRef cst :: lrecref
  in
  let _ = List.fold_right2 declare listdecl lrecnames [] in
  fixpoint_message None lrecnames

let get_common_underlying_mutual_inductive = function
  | [] -> assert false
  | (id,(mind,i as ind))::l as all ->
      match List.filter (fun (_,(mind',_)) -> mind <> mind') l with
      | (_,ind')::_ ->
	  raise (RecursionSchemeError (NotMutualInScheme (ind,ind')))
      | [] ->
	  if not (list_distinct (List.map snd (List.map snd all))) then
	    error "A type occurs twice";
	  mind,
	  list_map_filter
	    (function (Some id,(_,i)) -> Some (i,snd id) | (None,_) -> None) all

let do_scheme l =
  let ischeme,escheme = split_scheme l in
(* we want 1 kind of scheme at a time so we check if the user
tried to declare different schemes at once *)
    if (ischeme <> []) && (escheme <> [])
    then
      error "Do not declare equality and induction scheme at the same time."
    else (
      if ischeme <> [] then do_mutual_induction_scheme ischeme
      else
	let mind,l = get_common_underlying_mutual_inductive escheme in
	declare_beq_scheme_with l mind;
	declare_eq_decidability_scheme_with l mind
    )

(**********************************************************************)
(* Combined scheme *)
(* Matthieu Sozeau, Dec 2006 *)

let list_split_rev_at index l =
  let rec aux i acc = function
      hd :: tl when i = index -> acc, tl
    | hd :: tl -> aux (succ i) (hd :: acc) tl
    | [] -> failwith "list_split_when: Invalid argument"
  in aux 0 [] l

let fold_left' f = function
    [] -> raise (Invalid_argument "fold_left'")
  | hd :: tl -> List.fold_left f hd tl

let build_combined_scheme env schemes =
  let defs = List.map (fun cst -> (cst, Typeops.type_of_constant env cst)) schemes in
(*   let nschemes = List.length schemes in *)
  let find_inductive ty =
    let (ctx, arity) = decompose_prod ty in
    let (_, last) = List.hd ctx in
      match kind_of_term last with
	| App (ind, args) ->
	    let ind = destInd ind in
	    let (_,spec) = Inductive.lookup_mind_specif env ind in
	      ctx, ind, spec.mind_nrealargs
	| _ -> ctx, destInd last, 0
  in
  let (c, t) = List.hd defs in
  let ctx, ind, nargs = find_inductive t in
  (* Number of clauses, including the predicates quantification *)
  let prods = nb_prod t - (nargs + 1) in
  let coqand = Coqlib.build_coq_and () and coqconj = Coqlib.build_coq_conj () in
  let relargs = rel_vect 0 prods in
  let concls = List.rev_map
    (fun (cst, t) ->
      mkApp(mkConst cst, relargs),
      snd (decompose_prod_n prods t)) defs in
  let concl_bod, concl_typ =
    fold_left'
      (fun (accb, acct) (cst, x) ->
	mkApp (coqconj, [| x; acct; cst; accb |]),
	mkApp (coqand, [| x; acct |])) concls
  in
  let ctx, _ =
    list_split_rev_at prods
      (List.rev_map (fun (x, y) -> x, None, y) ctx) in
  let typ = it_mkProd_wo_LetIn concl_typ ctx in
  let body = it_mkLambda_or_LetIn concl_bod ctx in
  (body, typ)

let do_combined_scheme name schemes =
  let csts =
    List.map (fun x ->
		let refe = Ident x in
		let qualid = qualid_of_reference refe in
		try Nametab.locate_constant (snd qualid)
                with Not_found -> error ((string_of_qualid (snd qualid))^" is not declared."))
      schemes
  in
  let body,typ = build_combined_scheme (Global.env ()) csts in
  ignore (define (snd name) UserVerbose body (Some typ));
  fixpoint_message None [snd name]

(**********************************************************************)

let map_inductive_block f kn n = for i=0 to n-1 do f (kn,i) done

let mutual_inductive_size kn = Array.length (Global.lookup_mind kn).mind_packets

let declare_default_schemes kn =
  let n = mutual_inductive_size kn in
  if !elim_flag then declare_induction_schemes kn;
  if !case_flag then map_inductive_block declare_one_case_analysis_scheme kn n;
  if is_eq_flag() then try_declare_beq_scheme kn;
  if !eq_dec_flag then try_declare_eq_decidability kn;
  if !rewriting_flag then map_inductive_block declare_congr_scheme kn n;
  if !rewriting_flag then map_inductive_block declare_sym_scheme kn n;
  if !rewriting_flag then map_inductive_block declare_rewriting_schemes kn n