aboutsummaryrefslogtreecommitdiffhomepage
path: root/toplevel/himsg.ml
blob: 8c2b61eb40c0856eb11f533c97874867c1e048df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

(* $Id$ *)

open Pp
open Util
open Options
open Names
open Generic
open Term
open Inductive
open Sign
open Environ
open Type_errors
open Reduction
open Logic
open Pretty
open Printer
open Ast

let guill s = "\""^s^"\""

let explain_unbound_rel k ctx n =
  let pe = pr_ne_env [< 'sTR"in environment" >] k ctx in
  [< 'sTR"Unbound reference: "; pe; 'fNL;
     'sTR"The reference "; 'iNT n; 'sTR" is free" >]

let explain_cant_execute k ctx c =
  let tc = gentermpr k ctx c in
  [< 'sTR"Cannot execute term:"; 'bRK(1,1); tc >]

let explain_not_type k ctx c =
  let pe = pr_ne_env [< 'sTR"In environment" >] k ctx in
  let pc = gentermpr k ctx c in
  [< pe; 'cUT; 'sTR "the term"; 'bRK(1,1); pc; 'sPC;
     'sTR"should be typed by Set, Prop or Type." >];;

let explain_bad_assumption k ctx c =
  let pc = gentermpr k ctx c in
  [< 'sTR "Cannot declare a variable or hypothesis over the term";
     'bRK(1,1); pc; 'sPC; 'sTR "because this term is not a type." >];;

let explain_reference_variables id =
  [< 'sTR "the constant"; 'sPC; print_id id; 'sPC; 
     'sTR "refers to variables which are not in the context" >]

let msg_bad_elimination ctx k = function
  | Some(ki,kp,explanation) ->
      let pki = gentermpr k ctx ki in
      let pkp = gentermpr k ctx kp in
      (hOV 0 
         [< 'fNL; 'sTR "Elimination of an inductive object of sort : ";
            pki; 'bRK(1,0);
            'sTR "is not allowed on a predicate in sort : "; pkp ;'fNL;
            'sTR "because"; 'sPC; 'sTR explanation >])
  | None -> 
      [<>]

let explain_elim_arity k ctx ind aritylst c p pt okinds = 
  let pi = gentermpr k ctx ind in
  let ppar = prlist_with_sep pr_coma (gentermpr k ctx) aritylst in
  let pc = gentermpr k ctx c in
  let pp = gentermpr k ctx p in
  let ppt = gentermpr k ctx pt in
  [< 'sTR "Incorrect elimination of"; 'bRK(1,1); pc; 'sPC;
     'sTR "in the inductive type"; 'bRK(1,1); pi; 'fNL;
     'sTR "The elimination predicate"; 'bRK(1,1); pp; 'sPC;
     'sTR "has type"; 'bRK(1,1); ppt; 'fNL;
     'sTR "It should be one of :"; 'bRK(1,1) ; hOV 0 ppar; 'fNL;
     msg_bad_elimination ctx k okinds >]

let explain_case_not_inductive k ctx c ct =
  let pc = gentermpr k ctx c in
  let pct = gentermpr k ctx ct in
  [< 'sTR "In Cases expression"; 'bRK(1,1); pc; 'sPC; 
     'sTR "has type"; 'bRK(1,1); pct; 'sPC; 
     'sTR "which is not an inductive definition" >]
  
let explain_number_branches k ctx c ct expn =
  let pc = gentermpr k ctx c in
  let pct = gentermpr k ctx ct in
  [< 'sTR "Cases on term"; 'bRK(1,1); pc; 'sPC ;
     'sTR "of type"; 'bRK(1,1); pct; 'sPC;
     'sTR "expects ";  'iNT expn; 'sTR " branches" >]

let explain_ill_formed_branch k ctx c i actty expty =
  let pc = gentermpr k ctx c in
  let pa = gentermpr k ctx actty in
  let pe = gentermpr k ctx expty in
  [< 'sTR "In Cases expression on term"; 'bRK(1,1); pc;
     'sPC; 'sTR "the branch " ; 'iNT (i+1);
     'sTR " has type"; 'bRK(1,1); pa ; 'sPC; 
     'sTR "which should be"; 'bRK(1,1); pe >]

let explain_generalization k ctx (name,var) c =
  let pe = pr_ne_env [< 'sTR"in environment" >] k ctx in
  let pv = gentermpr k ctx var.body in
  let pc = gentermpr k (add_rel (name,var) ctx) c in
  [< 'sTR"Illegal generalization: "; pe; 'fNL;
     'sTR"Cannot generalize"; 'bRK(1,1); pv; 'sPC;
     'sTR"over"; 'bRK(1,1); pc; 'sPC;
     'sTR"which should be typed by Set, Prop or Type." >]

let explain_actual_type k ctx c ct pt =
  let pe = pr_ne_env [< 'sTR"In environment" >] k ctx in
  let pc = gentermpr k ctx c in
  let pct = gentermpr k ctx ct in
  let pt = gentermpr k ctx pt in
  [< pe; 'fNL;
     'sTR"The term"; 'bRK(1,1); pc ; 'sPC ;
     'sTR"does not have type"; 'bRK(1,1); pt; 'fNL;
     'sTR"Actually, it has type" ; 'bRK(1,1); pct >]

let explain_cant_apply k ctx s rator randl =
  let pe = pr_ne_env [< 'sTR"in environment" >] k ctx in
  let pr = gentermpr k ctx rator.uj_val in
  let prt = gentermpr k ctx rator.uj_type in
  let term_string = if List.length randl > 1 then "terms" else "term" in
  let appl = 
    prlist_with_sep pr_fnl
      (fun c ->
         let pc = gentermpr k ctx c.uj_val in
         let pct = gentermpr k ctx c.uj_type in
         hOV 2 [< pc; 'sPC; 'sTR": " ; pct >]) randl 
  in
  [< 'sTR"Illegal application ("; 'sTR s; 'sTR"): "; pe; 'fNL;
     'sTR"The term"; 'bRK(1,1); pr; 'sPC;
     'sTR"of type"; 'bRK(1,1); prt; 'sPC ;
     'sTR("cannot be applied to the "^term_string); 'fNL; 
     'sTR" "; v 0 appl >]

(* (co)fixpoints *)
let explain_ill_formed_rec_body k ctx str lna i vdefs =
  let pvd = gentermpr k ctx vdefs.(i) in
  let s =
    match List.nth lna i with Name id -> string_of_id id | Anonymous -> "_" in
  [< str; 'fNL; 'sTR"The ";
     if Array.length vdefs = 1 then [<>] else [<'iNT (i+1); 'sTR "-th ">];
     'sTR"recursive definition"; 'sPC; 'sTR s;
	 'sPC ; 'sTR":="; 'sPC ; pvd; 'sPC;
     'sTR "is not well-formed" >]
    
let explain_ill_typed_rec_body k ctx i lna vdefj vargs =
  let pvd = gentermpr k ctx (vdefj.(i)).uj_val in
  let pvdt = gentermpr k ctx (vdefj.(i)).uj_type in
  let pv = gentermpr k ctx (body_of_type vargs.(i)) in
  [< 'sTR"The " ;
     if Array.length vdefj = 1 then [<>] else [<'iNT (i+1); 'sTR "-th">];
     'sTR"recursive definition" ; 'sPC; pvd; 'sPC;
     'sTR "has type"; 'sPC; pvdt;'sPC; 'sTR "it should be"; 'sPC; pv >]

let explain_not_inductive k ctx c =
  let pc = gentermpr k ctx c in
  [< 'sTR"The term"; 'bRK(1,1); pc; 'sPC;
     'sTR "is not an inductive definition" >]

let explain_ml_case k ctx mes c ct br brt =
  let pc = gentermpr k ctx c in
  let pct = gentermpr k ctx ct in
  let expln =
    match mes with
      | "Inductive" -> [< pct; 'sTR "is not an inductive definition">]
      | "Predicate" -> [< 'sTR "ML case not allowed on a predicate">]
      | "Absurd" -> [< 'sTR "Ill-formed case expression on an empty type" >]
      | "Decomp" ->
          let plf = gentermpr k ctx br in
          let pft = gentermpr k ctx brt in
          [< 'sTR "The branch "; plf; 'wS 1; 'cUT; 'sTR "has type "; pft;
             'wS 1; 'cUT;
             'sTR "does not correspond to the inductive definition" >]
      | "Dependent" ->
          [< 'sTR "ML case not allowed for a dependent case elimination">]
      | _ -> [<>]
  in
  hOV 0 [< 'sTR "In ML case expression on "; pc; 'wS 1; 'cUT ;
           'sTR "of type";  'wS 1; pct; 'wS 1; 'cUT; 
           'sTR "which is an inductive predicate."; 'fNL; expln >]

let explain_cant_find_case_type k ctx c =
  let pe = gentermpr k ctx c in
  hOV 3 [<'sTR "Cannot infer type of whole Case expression on"; 'wS 1; pe >]

(***
let explain_cant_find_case_type_loc loc k ctx c =
  let pe = gentermpr k ctx c in
  user_err_loc
    (loc,"pretype",
     hOV 3 [<'sTR "Cannot infer type of whole Case expression on"; 
	     'wS 1; pe >])
***)

let explain_occur_check k ctx ev rhs =
  let id = "?" ^ string_of_int ev in
  let pt = gentermpr k ctx rhs in
  [< 'sTR"Occur check failed: tried to define "; 'sTR id;
     'sTR" with term"; 'bRK(1,1); pt >]

let explain_not_clean k ctx ev t =
  let c = Rel (Intset.choose (free_rels t)) in
  let id = "?" ^ string_of_int ev in
  let var = gentermpr k ctx c in
  [< 'sTR"Tried to define "; 'sTR id;
     'sTR" with a term using variable "; var; 'sPC;
     'sTR"which is not in its scope." >]

let explain_var_not_found k ctx id = 
  [< 'sTR "The variable"; 'sPC; 'sTR (string_of_id id);
     'sPC ; 'sTR "was not found"; 
     'sPC ; 'sTR "in the current"; 'sPC ; 'sTR "environment" >]

(* Pattern-matching errors *)
let explain_bad_constructor k ctx cstr ind =
  let pi = pr_inductive ind in
  let pc = pr_constructor cstr in
  let pt = pr_inductive (inductive_of_constructor cstr) in
  [< 'sTR "Expecting a constructor in inductive type "; pi; 'bRK(1,1) ;
     'sTR " but found the constructor " ; pc; 'bRK(1,1) ;
     'sTR " in inductive type "; pt >]

let explain_wrong_numarg_of_constructor k ctx cstr n =
  let pc = pr_constructor (cstr,[||]) in
  [<'sTR "The constructor "; pc;
    'sTR " expects " ; 'iNT n ; 'sTR " arguments. ">]

let explain_wrong_predicate_arity k ctx pred nondep_arity dep_arity=
  let pp = gentermpr k ctx pred in
  [<'sTR "The elimination predicate " ; pp; 'cUT;
    'sTR "should be of arity " ;
    'iNT nondep_arity ; 'sTR " (for non dependent case)  or " ;
    'iNT dep_arity ; 'sTR " (for dependent case).">]

let explain_needs_inversion k ctx x t =
  let px = gentermpr k ctx x in
  let pt = gentermpr k ctx t in
  [< 'sTR "Sorry, I need inversion to compile pattern matching of term ";
     px ; 'sTR " of type: "; pt>]


let explain_type_error k ctx = function
  | UnboundRel n -> 
      explain_unbound_rel k ctx n
  | CantExecute c -> 
      explain_cant_execute k ctx c
  | NotAType c -> 
      explain_not_type k ctx c
  | BadAssumption c -> 
      explain_bad_assumption k ctx c
  | ReferenceVariables id -> 
      explain_reference_variables id
  | ElimArity (ind, aritylst, c, p, pt, okinds) ->
      explain_elim_arity k ctx ind aritylst c p pt okinds 
  | CaseNotInductive (c, ct) -> 
      explain_case_not_inductive k ctx c ct
  | NumberBranches (c, ct, n) -> 
      explain_number_branches k ctx c ct n
  | IllFormedBranch (c, i, actty, expty) -> 
      explain_ill_formed_branch k ctx c i actty expty 
  | Generalization (nvar, c) ->
      explain_generalization k ctx nvar c
  | ActualType (c, ct, pt) -> 
      explain_actual_type k ctx c ct pt
  | CantAply (s, rator, randl) ->
      explain_cant_apply k ctx s rator randl
  | IllFormedRecBody (i, lna, vdefj, vargs) ->
      explain_ill_formed_rec_body k ctx i lna vdefj vargs
  | IllTypedRecBody (i, lna, vdefj, vargs) ->
      explain_ill_typed_rec_body k ctx i lna vdefj vargs
  | NotInductive c ->
      explain_not_inductive k ctx c
  | MLCase (mes,c,ct,br,brt) ->
      explain_ml_case k ctx mes c ct br brt
  | CantFindCaseType c ->
      explain_cant_find_case_type k ctx c
  | OccurCheck (n,c) ->
      explain_occur_check k ctx n c
  | NotClean (n,c) ->
      explain_not_clean k ctx n c
  | VarNotFound id ->
      explain_var_not_found k ctx id
  (* Pattern-matching errors *)
  | BadConstructor (c,ind) ->
      explain_bad_constructor k ctx c ind
  | WrongNumargConstructor (c,n) ->
      explain_wrong_numarg_of_constructor k ctx c n
  | WrongPredicateArity (pred,n,dep) ->
      explain_wrong_predicate_arity k ctx pred n dep
  | NeedsInversion (x,t) ->
      explain_needs_inversion k ctx x t

let explain_refiner_bad_type arg ty conclty =
  [< 'sTR"refiner was given an argument"; 'bRK(1,1); 
     prterm arg; 'sPC;
     'sTR"of type"; 'bRK(1,1); prterm ty; 'sPC;
     'sTR"instead of"; 'bRK(1,1); prterm conclty >]

let explain_refiner_occur_meta t =
  [< 'sTR"cannot refine with term"; 'bRK(1,1); prterm t;
     'sPC; 'sTR"because there are metavariables, and it is";
     'sPC; 'sTR"neither an application nor a Case" >]

let explain_refiner_cannot_applt t harg =
  [< 'sTR"in refiner, a term of type "; 'bRK(1,1);
     prterm t; 'sPC; 'sTR"could not be applied to"; 'bRK(1,1);
     prterm harg >]

let explain_refiner_cannot_unify m n =
  let pm = prterm m in 
  let pn = prterm n in
  [< 'sTR"Impossible to unify"; 'bRK(1,1) ; pm; 'sPC ;
     'sTR"with"; 'bRK(1,1) ; pn >]

let explain_refiner_cannot_generalize ty =
  [< 'sTR "cannot find a generalisation of the goal with type : "; 
     prterm ty >]

let explain_refiner_not_well_typed c =
  [< 'sTR"The term " ; prterm c ; 'sTR" is not well-typed" >]

let explain_refiner_bad_tactic_args s l =
  [< 'sTR "Internal tactic "; 'sTR s; 'sTR " cannot be applied to ";
     Tacmach.pr_tactic (s,l) >]

let explain_refiner_error = function
  | BadType (arg,ty,conclty) -> explain_refiner_bad_type arg ty conclty
  | OccurMeta t -> explain_refiner_occur_meta t
  | CannotApply (t,harg) -> explain_refiner_cannot_applt t harg
  | CannotUnify (m,n) -> explain_refiner_cannot_unify m n
  | CannotGeneralize (_,ty) -> explain_refiner_cannot_generalize ty
  | NotWellTyped c -> explain_refiner_not_well_typed c
  | BadTacticArgs (s,l) -> explain_refiner_bad_tactic_args s l

let error_non_strictly_positive k lna c v  =
  let env = assumptions_for_print lna in
  let pc = gentermpr k env c in
  let pv = gentermpr k env v in
  [< 'sTR "Non strictly positive occurrence of "; pv; 'sTR " in";
     'bRK(1,1); pc >]

let error_ill_formed_inductive k lna c v =
  let env = assumptions_for_print lna in
  let pc = gentermpr k env c in
  let pv = gentermpr k env v in
  [< 'sTR "Not enough arguments applied to the "; pv;
     'sTR " in"; 'bRK(1,1); pc >]

let error_ill_formed_constructor k lna c v =
  let env = assumptions_for_print lna in
  let pc = gentermpr k env c in
  let pv = gentermpr k env v in
  [< 'sTR "The conclusion of"; 'bRK(1,1); pc; 'bRK(1,1); 
     'sTR "is not valid;"; 'bRK(1,1); 'sTR "it must be built from "; pv >]

let str_of_nth n =
  (string_of_int n)^
  (match n mod 10 with
     | 1 -> "st"
     | 2 -> "nd"
     | 3 -> "rd"
     | _ -> "th")

let error_bad_ind_parameters k lna c n v1 v2  =
  let env = assumptions_for_print lna in
  let pc = gentermpr_at_top k env c in
  let pv1 = gentermpr k env v1 in
  let pv2 = gentermpr k env v2 in
  [< 'sTR ("The "^(str_of_nth n)^" argument of "); pv2; 'bRK(1,1);
     'sTR "must be "; pv1; 'sTR " in"; 'bRK(1,1); pc >]

let error_same_names_types id =
  [< 'sTR "The name"; 'sPC; print_id id; 'sPC; 
     'sTR "is used twice is the inductive types definition." >]

let error_same_names_constructors id cid =
  [< 'sTR "The constructor name"; 'sPC; print_id cid; 'sPC; 
     'sTR "is used twice is the definition of type"; 'sPC;
     print_id id >]

let error_not_an_arity id =
  [< 'sTR "The type of"; 'sPC; print_id id; 'sPC; 'sTR "is not an arity." >]

let error_bad_entry () =
  [< 'sTR "Bad inductive definition." >]

let explain_inductive_error = function
  | NonPos (lna,c,v) -> error_non_strictly_positive CCI lna c v
  | NotEnoughArgs (lna,c,v) -> error_ill_formed_inductive CCI lna c v
  | NotConstructor (lna,c,v) -> error_ill_formed_constructor CCI lna c v
  | NonPar (lna,c,n,v1,v2) -> error_bad_ind_parameters CCI lna c n v1 v2
  | SameNamesTypes id -> error_same_names_types id
  | SameNamesConstructors (id,cid) -> error_same_names_constructors id cid
  | NotAnArity id -> error_not_an_arity id
  | BadEntry -> error_bad_entry ()