1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Options
open Names
open Nameops
open Term
open Termops
open Inductive
open Indtypes
open Sign
open Environ
open Pretype_errors
open Type_errors
open Reduction
open Cases
open Logic
open Printer
open Ast
open Rawterm
open Evd
let quote s = if !Options.v7 then s else h 0 (str "\"" ++ s ++ str "\"")
let prterm c = quote (prterm c)
let prterm_env e c = quote (prterm_env e c)
let prjudge_env e c = let v,t = prjudge_env e c in (quote v,quote t)
let nth i =
let many = match i mod 10 with 1 -> "st" | 2 -> "nd" | _ -> "th" in
int i ++ str many
let pr_db ctx i =
try
match lookup_rel i ctx with
Name id, _, _ -> pr_id id
| Anonymous, _, _ -> str"<>"
with Not_found -> str"UNBOUND_REL_"++int i
let explain_unbound_rel ctx n =
let pe = pr_ne_context_of (str "In environment") ctx in
str"Unbound reference: " ++ pe ++
str"The reference " ++ int n ++ str " is free"
let explain_unbound_var ctx v =
let var = pr_id v in
str"No such section variable or assumption : " ++ var
let explain_not_type ctx j =
let pe = pr_ne_context_of (str"In environment") ctx in
let pc,pt = prjudge_env ctx j in
pe ++ str "the term" ++ brk(1,1) ++ pc ++ spc () ++
str"has type" ++ spc () ++ pt ++ spc () ++
str"which should be Set, Prop or Type."
let explain_bad_assumption ctx j =
let pe = pr_ne_context_of (str"In environment") ctx in
let pc,pt = prjudge_env ctx j in
pe ++ str "cannot declare a variable or hypothesis over the term" ++
brk(1,1) ++ pc ++ spc () ++ str"of type" ++ spc () ++ pt ++ spc () ++
str "because this term is not a type."
let explain_reference_variables c =
let pc = prterm c in
str "the constant" ++ spc () ++ pc ++ spc () ++
str "refers to variables which are not in the context"
let rec pr_disjunction pr = function
| [a] -> pr a
| [a;b] -> pr a ++ str " or" ++ spc () ++ pr b
| a::l -> pr a ++ str "," ++ spc () ++ pr_disjunction pr l
| [] -> assert false
let explain_elim_arity ctx ind aritylst c pj okinds =
let ctx = make_all_name_different ctx in
let pi = pr_inductive ctx ind in
let pc = prterm_env ctx c in
let ppt = prterm_env ctx pj.uj_type in
let msg = match okinds with
| Some(kp,ki,explanation) ->
let pki = prterm_env ctx ki in
let pkp = prterm_env ctx kp in
let explanation = match explanation with
| NonInformativeToInformative ->
"proofs can be eliminated only to build proofs"
| StrongEliminationOnNonSmallType ->
"strong elimination on non-small inductive types leads to paradoxes."
| WrongArity ->
"wrong arity" in
(hov 0
(fnl () ++ str "Elimination of an inductive object of sort " ++
pki ++ brk(1,0) ++
str "is not allowed on a predicate in sort " ++ pkp ++fnl () ++
str "because" ++ spc () ++ str explanation))
| None ->
mt ()
in
hov 0 (
str "Incorrect elimination of" ++ spc() ++ pc ++ spc () ++
str "in the inductive type " ++ spc() ++ quote pi ++
(if !Options.v7 then
let pp = prterm_env ctx pj.uj_val in
let ppar = pr_disjunction (prterm_env ctx) aritylst in
let ppt = prterm_env ctx pj.uj_type in
fnl () ++
str "The elimination predicate" ++ brk(1,1) ++ pp ++ spc () ++
str "has arity" ++ brk(1,1) ++ ppt ++ fnl () ++
str "It should be " ++ brk(1,1) ++ ppar
else
let sorts = List.map (fun x -> mkSort (new_sort_in_family x))
(list_uniquize (List.map (fun ar ->
family_of_sort (destSort (snd (decompose_prod_assum ar)))) aritylst)) in
let ppar = pr_disjunction (prterm_env ctx) sorts in
let ppt = prterm_env ctx (snd (decompose_prod_assum pj.uj_type)) in
str "," ++ spc() ++ str "the return type has sort" ++ spc() ++ ppt ++
spc () ++ str "while it should be " ++ ppar))
++ fnl () ++ msg
let explain_case_not_inductive ctx cj =
let ctx = make_all_name_different ctx in
let pc = prterm_env ctx cj.uj_val in
let pct = prterm_env ctx cj.uj_type in
match kind_of_term cj.uj_type with
| Evar _ ->
str "Cannot infer a type for this expression"
| _ ->
str "The term" ++ brk(1,1) ++ pc ++ spc () ++
str "has type" ++ brk(1,1) ++ pct ++ spc () ++
str "which is not a (co-)inductive type"
let explain_number_branches ctx cj expn =
let ctx = make_all_name_different ctx in
let pc = prterm_env ctx cj.uj_val in
let pct = prterm_env ctx cj.uj_type in
str "Matching on term" ++ brk(1,1) ++ pc ++ spc () ++
str "of type" ++ brk(1,1) ++ pct ++ spc () ++
str "expects " ++ int expn ++ str " branches"
let explain_ill_formed_branch ctx c i actty expty =
let ctx = make_all_name_different ctx in
let pc = prterm_env ctx c in
let pa = prterm_env ctx actty in
let pe = prterm_env ctx expty in
str "In pattern-matching on term" ++ brk(1,1) ++ pc ++
spc () ++ str "the branch " ++ int (i+1) ++
str " has type" ++ brk(1,1) ++ pa ++ spc () ++
str "which should be" ++ brk(1,1) ++ pe
let explain_generalization ctx (name,var) j =
let pe = pr_ne_context_of (str "In environment") ctx in
let pv = prtype_env ctx var in
let (pc,pt) = prjudge_env (push_rel_assum (name,var) ctx) j in
str"Illegal generalization: " ++ pe ++
str"Cannot generalize" ++ brk(1,1) ++ pv ++ spc () ++
str"over" ++ brk(1,1) ++ pc ++ str"," ++ spc () ++
str"it has type" ++ spc () ++ pt ++
spc () ++ str"which should be Set, Prop or Type."
let explain_actual_type ctx j pt =
let pe = pr_ne_context_of (str "In environment") ctx in
let (pc,pct) = prjudge_env ctx j in
let pt = prterm_env ctx pt in
pe ++
str "The term" ++ brk(1,1) ++ pc ++ spc () ++
str "has type" ++ brk(1,1) ++ pct ++ brk(1,1) ++
str "while it is expected to have type" ++ brk(1,1) ++ pt
let explain_cant_apply_bad_type ctx (n,exptyp,actualtyp) rator randl =
let ctx = make_all_name_different ctx in
let randl = Array.to_list randl in
(* let pe = pr_ne_context_of (str"in environment") ctx in*)
let pr,prt = prjudge_env ctx rator in
let term_string1,term_string2 =
if List.length randl > 1 then
str "terms", (str"The "++nth n++str" term")
else
str "term", str "This term" in
let appl = prlist_with_sep pr_fnl
(fun c ->
let pc,pct = prjudge_env ctx c in
hov 2 (pc ++ spc () ++ str": " ++ pct)) randl
in
str"Illegal application (Type Error): " ++ (* pe ++ *) fnl () ++
str"The term" ++ brk(1,1) ++ pr ++ spc () ++
str"of type" ++ brk(1,1) ++ prt ++ spc () ++
str"cannot be applied to the " ++ term_string1 ++ fnl () ++
str" " ++ v 0 appl ++ fnl () ++ term_string2 ++ str" has type" ++
brk(1,1) ++ prterm_env ctx actualtyp ++ spc () ++
str"which should be coercible to" ++ brk(1,1) ++ prterm_env ctx exptyp
let explain_cant_apply_not_functional ctx rator randl =
let ctx = make_all_name_different ctx in
let randl = Array.to_list randl in
(* let pe = pr_ne_context_of (str"in environment") ctx in*)
let pr = prterm_env ctx rator.uj_val in
let prt = prterm_env ctx rator.uj_type in
let term_string = if List.length randl > 1 then "terms" else "term" in
let appl = prlist_with_sep pr_fnl
(fun c ->
let pc = prterm_env ctx c.uj_val in
let pct = prterm_env ctx c.uj_type in
hov 2 (pc ++ spc () ++ str": " ++ pct)) randl
in
str"Illegal application (Non-functional construction): " ++
(* pe ++ *) fnl () ++
str"The expression" ++ brk(1,1) ++ pr ++ spc () ++
str"of type" ++ brk(1,1) ++ prt ++ spc () ++
str("cannot be applied to the "^term_string) ++ fnl () ++
str" " ++ v 0 appl
let explain_unexpected_type ctx actual_type expected_type =
let pract = prterm_env ctx actual_type in
let prexp = prterm_env ctx expected_type in
str"This type is" ++ spc () ++ pract ++ spc () ++
str "but is expected to be" ++
spc () ++ prexp
let explain_not_product ctx c =
let pr = prterm_env ctx c in
str"The type of this term is a product," ++ spc () ++
str"but it is casted with type" ++
brk(1,1) ++ pr
(* TODO: use the names *)
(* (co)fixpoints *)
let explain_ill_formed_rec_body ctx err names i =
let prt_name i =
match names.(i) with
Name id -> str "Recursive definition of " ++ pr_id id
| Anonymous -> str"The " ++ nth i ++ str" definition" in
let st = match err with
(* Fixpoint guard errors *)
| NotEnoughAbstractionInFixBody ->
str "Not enough abstractions in the definition"
| RecursionNotOnInductiveType c ->
str "Recursive definition on" ++ spc() ++ prterm_env ctx c ++ spc() ++
str "which should be an inductive type"
| RecursionOnIllegalTerm(j,arg,le,lt) ->
let called =
match names.(j) with
Name id -> pr_id id
| Anonymous -> str"the " ++ nth i ++ str" definition" in
let vars =
match (lt,le) with
([],[]) -> mt()
| ([],[x]) ->
str "a subterm of " ++ pr_db ctx x
| ([],_) ->
str "a subterm of the following variables: " ++
prlist_with_sep pr_spc (pr_db ctx) le
| ([x],_) -> pr_db ctx x
| _ ->
str "one of the following variables: " ++
prlist_with_sep pr_spc (pr_db ctx) lt in
str "Recursive call to " ++ called ++ spc() ++
str "has principal argument equal to" ++ spc() ++
prterm_env ctx arg ++ fnl() ++ str "instead of " ++ vars
| NotEnoughArgumentsForFixCall j ->
let called =
match names.(j) with
Name id -> pr_id id
| Anonymous -> str"the " ++ nth i ++ str" definition" in
str "Recursive call to " ++ called ++ str " had not enough arguments"
(* CoFixpoint guard errors *)
| CodomainNotInductiveType c ->
str "the codomain is" ++ spc () ++ prterm_env ctx c ++ spc () ++
str "which should be a coinductive type"
| NestedRecursiveOccurrences ->
str "nested recursive occurrences"
| UnguardedRecursiveCall c ->
str "unguarded recursive call in" ++ spc() ++ prterm_env ctx c
| RecCallInTypeOfAbstraction c ->
str "recursive call forbidden in the domain of an abstraction:" ++
spc() ++ prterm_env ctx c
| RecCallInNonRecArgOfConstructor c ->
str "recursive call on a non-recursive argument of constructor" ++
spc() ++ prterm_env ctx c
| RecCallInTypeOfDef c ->
str "recursive call forbidden in the type of a recursive definition" ++
spc() ++ prterm_env ctx c
| RecCallInCaseFun c ->
str "recursive call in a branch of" ++ spc() ++ prterm_env ctx c
| RecCallInCaseArg c ->
str "recursive call in the argument of cases in" ++ spc() ++
prterm_env ctx c
| RecCallInCasePred c ->
str "recursive call in the type of cases in" ++ spc() ++
prterm_env ctx c
| NotGuardedForm c ->
str "sub-expression " ++ prterm_env ctx c ++ spc() ++
str "not in guarded form" ++ spc()++
str"(should be a constructor, an abstraction, a match, a cofix or a recursive call)"
in
prt_name i ++ str" is ill-formed." ++ fnl() ++
pr_ne_context_of (str "In environment") ctx ++
st
let explain_ill_typed_rec_body ctx i names vdefj vargs =
let ctx = make_all_name_different ctx in
let pvd,pvdt = prjudge_env ctx (vdefj.(i)) in
let pv = prterm_env ctx vargs.(i) in
str"The " ++
(if Array.length vdefj = 1 then mt () else int (i+1) ++ str "-th") ++
str"recursive definition" ++ spc () ++ pvd ++ spc () ++
str "has type" ++ spc () ++ pvdt ++spc () ++
str "it should be" ++ spc () ++ pv
(*
let explain_not_inductive ctx c =
let ctx = make_all_name_different ctx in
let pc = prterm_env ctx c in
str"The term" ++ brk(1,1) ++ pc ++ spc () ++
str "is not an inductive definition"
*)
let explain_cant_find_case_type ctx c =
let ctx = make_all_name_different ctx in
let pe = prterm_env ctx c in
hov 3 (str "Cannot infer type of pattern-matching on" ++ ws 1 ++ pe)
let explain_occur_check ctx ev rhs =
let ctx = make_all_name_different ctx in
let id = Evd.string_of_existential ev in
let pt = prterm_env ctx rhs in
str"Occur check failed: tried to define " ++ str id ++
str" with term" ++ brk(1,1) ++ pt
let explain_hole_kind env = function
| QuestionMark -> str "a term for this placeholder"
| CasesType ->
str "the type of this pattern-matching problem"
| BinderType (Name id) ->
str "a type for " ++ Nameops.pr_id id
| BinderType Anonymous ->
str "a type for this anonymous binder"
| ImplicitArg (c,(n,ido)) ->
if !Options.v7 then
str "the " ++ pr_ord n ++
str " implicit argument of " ++ Nametab.pr_global_env Idset.empty c
else
let id = out_some ido in
str "an instance for the implicit parameter " ++
pr_id id ++ spc () ++ str "of" ++
spc () ++ Nametab.pr_global_env Idset.empty c
| InternalHole ->
str "a term for an internal placeholder"
| TomatchTypeParameter (tyi,n) ->
str "the " ++ pr_ord n ++
str " argument of the inductive type (" ++ pr_inductive env tyi ++
str ") of this term"
let explain_not_clean ctx ev t k =
let ctx = make_all_name_different ctx in
let c = mkRel (Intset.choose (free_rels t)) in
let id = Evd.string_of_existential ev in
let var = prterm_env ctx c in
str"Tried to define " ++ explain_hole_kind ctx k ++
str" (" ++ str id ++ str ")" ++ spc() ++
str"with a term using variable " ++ var ++ spc () ++
str"which is not in its scope."
let explain_unsolvable_implicit env k =
str "Cannot infer " ++ explain_hole_kind env k
let explain_var_not_found ctx id =
str "The variable" ++ spc () ++ str (string_of_id id) ++
spc () ++ str "was not found" ++
spc () ++ str "in the current" ++ spc () ++ str "environment"
let explain_wrong_case_info ctx ind ci =
let ctx = make_all_name_different ctx in
let pi = prterm (mkInd ind) in
if ci.ci_ind = ind then
str"Pattern-matching expression on an object of inductive" ++ spc () ++ pi ++
spc () ++ str"has invalid information"
else
let pc = prterm (mkInd ci.ci_ind) in
str"A term of inductive type" ++ spc () ++ pi ++ spc () ++
str"was given to a pattern-matching expression on the inductive type" ++
spc () ++ pc
let explain_cannot_unify m n =
let pm = prterm m in
let pn = prterm n in
str"Impossible to unify" ++ brk(1,1) ++ pm ++ spc () ++
str"with" ++ brk(1,1) ++ pn
let explain_refiner_cannot_generalize ty =
str "Cannot find a well-typed generalisation of the goal with type : " ++
prterm ty
let explain_no_occurrence_found c =
str "Found no subterm matching " ++ prterm c ++ str " in the current goal"
let explain_cannot_unify_binding_type m n =
let pm = prterm m in
let pn = prterm n in
str "This binding has type" ++ brk(1,1) ++ pm ++ spc () ++
str "which should be unifiable with" ++ brk(1,1) ++ pn
let explain_type_error ctx err =
let ctx = make_all_name_different ctx in
match err with
| UnboundRel n ->
explain_unbound_rel ctx n
| UnboundVar v ->
explain_unbound_var ctx v
| NotAType j ->
explain_not_type ctx j
| BadAssumption c ->
explain_bad_assumption ctx c
| ReferenceVariables id ->
explain_reference_variables id
| ElimArity (ind, aritylst, c, pj, okinds) ->
explain_elim_arity ctx ind aritylst c pj okinds
| CaseNotInductive cj ->
explain_case_not_inductive ctx cj
| NumberBranches (cj, n) ->
explain_number_branches ctx cj n
| IllFormedBranch (c, i, actty, expty) ->
explain_ill_formed_branch ctx c i actty expty
| Generalization (nvar, c) ->
explain_generalization ctx nvar c
| ActualType (j, pt) ->
explain_actual_type ctx j pt
| CantApplyBadType (t, rator, randl) ->
explain_cant_apply_bad_type ctx t rator randl
| CantApplyNonFunctional (rator, randl) ->
explain_cant_apply_not_functional ctx rator randl
| IllFormedRecBody (err, lna, i) ->
explain_ill_formed_rec_body ctx err lna i
| IllTypedRecBody (i, lna, vdefj, vargs) ->
explain_ill_typed_rec_body ctx i lna vdefj vargs
| WrongCaseInfo (ind,ci) ->
explain_wrong_case_info ctx ind ci
(*
| NotInductive c ->
explain_not_inductive ctx c
*)
let explain_pretype_error ctx err =
let ctx = make_all_name_different ctx in
match err with
| CantFindCaseType c ->
explain_cant_find_case_type ctx c
| OccurCheck (n,c) ->
explain_occur_check ctx n c
| NotClean (n,c,k) ->
explain_not_clean ctx n c k
| UnsolvableImplicit k ->
explain_unsolvable_implicit ctx k
| VarNotFound id ->
explain_var_not_found ctx id
| UnexpectedType (actual,expected) ->
explain_unexpected_type ctx actual expected
| NotProduct c ->
explain_not_product ctx c
| CannotUnify (m,n) -> explain_cannot_unify m n
| CannotGeneralize ty -> explain_refiner_cannot_generalize ty
| NoOccurrenceFound c -> explain_no_occurrence_found c
| CannotUnifyBindingType (m,n) -> explain_cannot_unify_binding_type m n
(* Refiner errors *)
let explain_refiner_bad_type arg ty conclty =
str"refiner was given an argument" ++ brk(1,1) ++
prterm arg ++ spc () ++
str"of type" ++ brk(1,1) ++ prterm ty ++ spc () ++
str"instead of" ++ brk(1,1) ++ prterm conclty
let explain_refiner_occur_meta t =
str"cannot refine with term" ++ brk(1,1) ++ prterm t ++
spc () ++ str"because there are metavariables, and it is" ++
spc () ++ str"neither an application nor a Case"
let explain_refiner_occur_meta_goal t =
str"generated subgoal" ++ brk(1,1) ++ prterm t ++
spc () ++ str"has metavariables in it"
let explain_refiner_cannot_apply t harg =
str"in refiner, a term of type " ++ brk(1,1) ++
prterm t ++ spc () ++ str"could not be applied to" ++ brk(1,1) ++
prterm harg
let explain_refiner_not_well_typed c =
str"The term " ++ prterm c ++ str" is not well-typed"
let explain_intro_needs_product () =
str "Introduction tactics needs products"
let explain_does_not_occur_in c hyp =
str "The term" ++ spc () ++ prterm c ++ spc () ++ str "does not occur in" ++
spc () ++ pr_id hyp
let explain_non_linear_proof c =
str "cannot refine with term" ++ brk(1,1) ++ prterm c ++
spc () ++ str"because a metavariable has several occurrences"
let explain_refiner_error = function
| BadType (arg,ty,conclty) -> explain_refiner_bad_type arg ty conclty
| OccurMeta t -> explain_refiner_occur_meta t
| OccurMetaGoal t -> explain_refiner_occur_meta_goal t
| CannotApply (t,harg) -> explain_refiner_cannot_apply t harg
| NotWellTyped c -> explain_refiner_not_well_typed c
| IntroNeedsProduct -> explain_intro_needs_product ()
| DoesNotOccurIn (c,hyp) -> explain_does_not_occur_in c hyp
| NonLinearProof c -> explain_non_linear_proof c
(* Inductive errors *)
let error_non_strictly_positive env c v =
let pc = prterm_env env c in
let pv = prterm_env env v in
str "Non strictly positive occurrence of " ++ pv ++ str " in" ++
brk(1,1) ++ pc
let error_ill_formed_inductive env c v =
let pc = prterm_env env c in
let pv = prterm_env env v in
str "Not enough arguments applied to the " ++ pv ++
str " in" ++ brk(1,1) ++ pc
let error_ill_formed_constructor env c v =
let pc = prterm_env env c in
let pv = prterm_env env v in
str "The conclusion of" ++ brk(1,1) ++ pc ++ brk(1,1) ++
str "is not valid;" ++ brk(1,1) ++ str "it must be built from " ++ pv
let str_of_nth n =
(string_of_int n)^
(match n mod 10 with
| 1 -> "st"
| 2 -> "nd"
| 3 -> "rd"
| _ -> "th")
let error_bad_ind_parameters env c n v1 v2 =
let pc = prterm_env_at_top env c in
let pv1 = prterm_env env v1 in
let pv2 = prterm_env env v2 in
str ("The "^(str_of_nth n)^" argument of ") ++ pv2 ++ brk(1,1) ++
str "must be " ++ pv1 ++ str " in" ++ brk(1,1) ++ pc
let error_same_names_types id =
str "The name" ++ spc () ++ pr_id id ++ spc () ++
str "is used twice is the inductive types definition."
let error_same_names_constructors id cid =
str "The constructor name" ++ spc () ++ pr_id cid ++ spc () ++
str "is used twice is the definition of type" ++ spc () ++
pr_id id
let error_same_names_overlap idl =
str "The following names" ++ spc () ++
str "are used both as type names and constructor names:" ++ spc () ++
prlist_with_sep pr_coma pr_id idl
let error_not_an_arity id =
str "The type of" ++ spc () ++ pr_id id ++ spc () ++ str "is not an arity."
let error_bad_entry () =
str "Bad inductive definition."
let error_not_allowed_case_analysis dep kind i =
str (if dep then "Dependent" else "Non Dependent") ++
str " case analysis on sort: " ++ print_sort kind ++ fnl () ++
str "is not allowed for inductive definition: " ++
pr_inductive (Global.env()) i
let error_bad_induction dep indid kind =
str (if dep then "Dependent" else "Non dependent") ++
str " induction for type " ++ pr_id indid ++
str " and sort " ++ print_sort kind ++ spc () ++
str "is not allowed"
let error_not_mutual_in_scheme () =
str "Induction schemes is concerned only with mutually inductive types"
let explain_inductive_error = function
(* These are errors related to inductive constructions *)
| NonPos (env,c,v) -> error_non_strictly_positive env c v
| NotEnoughArgs (env,c,v) -> error_ill_formed_inductive env c v
| NotConstructor (env,c,v) -> error_ill_formed_constructor env c v
| NonPar (env,c,n,v1,v2) -> error_bad_ind_parameters env c n v1 v2
| SameNamesTypes id -> error_same_names_types id
| SameNamesConstructors (id,cid) -> error_same_names_constructors id cid
| SameNamesOverlap idl -> error_same_names_overlap idl
| NotAnArity id -> error_not_an_arity id
| BadEntry -> error_bad_entry ()
(* These are errors related to recursors *)
| NotAllowedCaseAnalysis (dep,k,i) ->
error_not_allowed_case_analysis dep k i
| BadInduction (dep,indid,kind) -> error_bad_induction dep indid kind
| NotMutualInScheme -> error_not_mutual_in_scheme ()
(* Pattern-matching errors *)
let explain_bad_pattern ctx cstr ty =
let ctx = make_all_name_different ctx in
let pt = prterm_env ctx ty in
let pc = pr_constructor ctx cstr in
str "Found the constructor " ++ pc ++ brk(1,1) ++
str "while matching a term of type " ++ pt ++ brk(1,1) ++
str "which is not an inductive type"
let explain_bad_constructor ctx cstr ind =
let pi = pr_inductive ctx ind in
(* let pc = pr_constructor ctx cstr in*)
let pt = pr_inductive ctx (inductive_of_constructor cstr) in
str "Found a constructor of inductive type " ++ pt ++ brk(1,1) ++
str "while a constructor of " ++ pi ++ brk(1,1) ++
str "is expected"
let explain_wrong_numarg_of_constructor ctx cstr n =
let pc = pr_constructor ctx cstr in
str "The constructor " ++ pc ++ str " expects " ++
(if n = 0 then str "no argument." else if n = 1 then str "1 argument."
else (int n ++ str " arguments."))
let explain_wrong_predicate_arity ctx pred nondep_arity dep_arity=
let ctx = make_all_name_different ctx in
let pp = prterm_env ctx pred in
str "The elimination predicate " ++ spc () ++ pp ++ fnl () ++
str "should be of arity" ++ spc () ++
prterm_env ctx nondep_arity ++ spc () ++
str "(for non dependent case) or" ++
spc () ++ prterm_env ctx dep_arity ++ spc () ++ str "(for dependent case)."
let explain_needs_inversion ctx x t =
let ctx = make_all_name_different ctx in
let px = prterm_env ctx x in
let pt = prterm_env ctx t in
str "Sorry, I need inversion to compile pattern matching of term " ++
px ++ str " of type: " ++ pt
let explain_unused_clause env pats =
let s = if List.length pats > 1 then "s" else "" in
(* Without localisation
(str ("Unused clause with pattern"^s) ++ spc () ++
hov 0 (prlist_with_sep pr_spc pr_cases_pattern pats) ++ str ")")
*)
str "This clause is redundant"
let explain_non_exhaustive env pats =
let s = if List.length pats > 1 then "s" else "" in
str ("Non exhaustive pattern-matching: no clause found for pattern"^s) ++
spc () ++ hov 0 (prlist_with_sep pr_spc pr_cases_pattern pats)
let explain_cannot_infer_predicate ctx typs =
let ctx = make_all_name_different ctx in
let pr_branch (cstr,typ) =
let cstr,_ = decompose_app cstr in
str "For " ++ prterm_env ctx cstr ++ str " : " ++ prterm_env ctx typ
in
str "Unable to unify the types found in the branches:" ++
spc () ++ hov 0 (prlist_with_sep pr_fnl pr_branch (Array.to_list typs))
let explain_pattern_matching_error env = function
| BadPattern (c,t) ->
explain_bad_pattern env c t
| BadConstructor (c,ind) ->
explain_bad_constructor env c ind
| WrongNumargConstructor (c,n) ->
explain_wrong_numarg_of_constructor env c n
| WrongPredicateArity (pred,n,dep) ->
explain_wrong_predicate_arity env pred n dep
| NeedsInversion (x,t) ->
explain_needs_inversion env x t
| UnusedClause tms ->
explain_unused_clause env tms
| NonExhaustive tms ->
explain_non_exhaustive env tms
| CannotInferPredicate typs ->
explain_cannot_infer_predicate env typs
|