1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Flags
open Term
open Termops
open Declarations
open Entries
open Inductive
open Environ
open Reduction
open Redexpr
open Declare
open Nametab
open Names
open Libnames
open Nameops
open Topconstr
open Library
open Libobject
open Constrintern
open Proof_type
open Tacmach
open Safe_typing
open Nametab
open Impargs
open Typeops
open Reductionops
open Indtypes
open Vernacexpr
open Decl_kinds
open Pretyping
open Evarutil
open Evarconv
open Notation
open Goptions
open Mod_subst
open Evd
open Decls
let mkLambdaCit = List.fold_right (fun (x,a) b -> mkLambdaC(x,default_binder_kind,a,b))
let mkProdCit = List.fold_right (fun (x,a) b -> mkProdC(x,default_binder_kind,a,b))
let rec abstract_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
| LocalRawAssum (idl,k,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],k,t,b)) idl
(abstract_constr_expr c bl)
let rec generalize_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,generalize_constr_expr c bl)
| LocalRawAssum (idl,k,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],k,t,b)) idl
(generalize_constr_expr c bl)
let rec under_binders env f n c =
if n = 0 then f env Evd.empty c else
match kind_of_term c with
| Lambda (x,t,c) ->
mkLambda (x,t,under_binders (push_rel (x,None,t) env) f (n-1) c)
| LetIn (x,b,t,c) ->
mkLetIn (x,b,t,under_binders (push_rel (x,Some b,t) env) f (n-1) c)
| _ -> assert false
let rec destSubCast c = match kind_of_term c with
| Lambda (x,t,c) ->
let (b,u) = destSubCast c in mkLambda (x,t,b), mkProd (x,t,u)
| LetIn (x,b,t,c) ->
let (d,u) = destSubCast c in mkLetIn (x,b,t,d), mkLetIn (x,b,t,u)
| Cast (b,_, u) -> (b,u)
| _ -> assert false
let rec complete_conclusion a cs = function
| CProdN (loc,bl,c) -> CProdN (loc,bl,complete_conclusion a cs c)
| CLetIn (loc,b,t,c) -> CLetIn (loc,b,t,complete_conclusion a cs c)
| CHole (loc, k) ->
let (has_no_args,name,params) = a in
if not has_no_args then
user_err_loc (loc,"",
str "Cannot infer the non constant arguments of the conclusion of "
++ pr_id cs);
let args = List.map (fun id -> CRef(Ident(loc,id))) params in
CAppExpl (loc,(None,Ident(loc,name)),List.rev args)
| c -> c
(* Commands of the interface *)
(* 1| Constant definitions *)
let definition_message id =
if_verbose message ((string_of_id id) ^ " is defined")
let constant_entry_of_com (bl,com,comtypopt,opacity,boxed) =
let env = Global.env() in
match comtypopt with
None ->
let b = abstract_constr_expr com bl in
let b, imps = interp_constr_evars_impls env b in
imps,
{ const_entry_body = b;
const_entry_type = None;
const_entry_opaque = opacity;
const_entry_boxed = boxed }
| Some comtyp ->
(* We use a cast to avoid troubles with evars in comtyp *)
(* that can only be resolved knowing com *)
let b = abstract_constr_expr (mkCastC (com, Rawterm.CastConv (DEFAULTcast,comtyp))) bl in
let b, imps = interp_constr_evars_impls env b in
let (body,typ) = destSubCast b in
imps,
{ const_entry_body = body;
const_entry_type = Some typ;
const_entry_opaque = opacity;
const_entry_boxed = boxed }
let red_constant_entry bl ce = function
| None -> ce
| Some red ->
let body = ce.const_entry_body in
{ ce with const_entry_body =
under_binders (Global.env()) (fst (reduction_of_red_expr red))
(local_binders_length bl)
body }
let declare_global_definition ident ce local imps =
let kn = declare_constant ident (DefinitionEntry ce,IsDefinition Definition) in
let gr = ConstRef kn in
maybe_declare_manual_implicits false gr (is_implicit_args ()) imps;
if local = Local && Flags.is_verbose() then
msg_warning (pr_id ident ++ str" is declared as a global definition");
definition_message ident;
gr
let declare_definition_hook = ref ignore
let set_declare_definition_hook = (:=) declare_definition_hook
let get_declare_definition_hook () = !declare_definition_hook
let declare_definition ident (local,boxed,dok) bl red_option c typopt hook =
let imps, ce = constant_entry_of_com (bl,c,typopt,false,boxed) in
let ce' = red_constant_entry bl ce red_option in
!declare_definition_hook ce';
let r = match local with
| Local when Lib.sections_are_opened () ->
let c =
SectionLocalDef(ce'.const_entry_body,ce'.const_entry_type,false) in
let _ = declare_variable ident (Lib.cwd(),c,IsDefinition Definition) in
definition_message ident;
if Pfedit.refining () then
Flags.if_verbose msg_warning
(str"Local definition " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
declare_global_definition ident ce' local imps in
hook local r
let syntax_definition ident (vars,c) local onlyparse =
let pat = interp_aconstr [] vars c in
Syntax_def.declare_syntactic_definition local ident onlyparse pat
(* 2| Variable/Hypothesis/Parameter/Axiom declarations *)
let assumption_message id =
if_verbose message ((string_of_id id) ^ " is assumed")
let declare_one_assumption is_coe (local,kind) c imps impl keep nl (_,ident) =
let r = match local with
| Local when Lib.sections_are_opened () ->
let _ =
declare_variable ident
(Lib.cwd(), SectionLocalAssum (c,impl,keep), IsAssumption kind) in
assumption_message ident;
if is_verbose () & Pfedit.refining () then
msgerrnl (str"Warning: Variable " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
let kn =
declare_constant ident (ParameterEntry (c,nl), IsAssumption kind) in
let gr = ConstRef kn in
maybe_declare_manual_implicits false gr (is_implicit_args ()) imps;
assumption_message ident;
if local=Local & Flags.is_verbose () then
msg_warning (pr_id ident ++ str" is declared as a parameter" ++
str" because it is at a global level");
gr in
if is_coe then Class.try_add_new_coercion r local
let declare_assumption_hook = ref ignore
let set_declare_assumption_hook = (:=) declare_assumption_hook
let declare_assumption idl is_coe k bl c impl keep nl =
if not (Pfedit.refining ()) then
let c = generalize_constr_expr c bl in
let env = Global.env () in
let c', imps = interp_type_evars_impls env c in
!declare_assumption_hook c';
List.iter (declare_one_assumption is_coe k c' imps impl keep nl) idl
else
errorlabstrm "Command.Assumption"
(str "Cannot declare an assumption while in proof editing mode.")
(* 3a| Elimination schemes for mutual inductive definitions *)
open Indrec
open Inductiveops
let non_type_eliminations =
[ (InProp,elimination_suffix InProp);
(InSet,elimination_suffix InSet) ]
let declare_one_elimination ind =
let (mib,mip) = Global.lookup_inductive ind in
let mindstr = string_of_id mip.mind_typename in
let declare s c t =
let id = id_of_string s in
let kn = Declare.declare_internal_constant id
(DefinitionEntry
{ const_entry_body = c;
const_entry_type = t;
const_entry_opaque = false;
const_entry_boxed = Flags.boxed_definitions() },
Decl_kinds.IsDefinition Definition) in
definition_message id;
kn
in
let env = Global.env () in
let sigma = Evd.empty in
let elim_scheme = Indrec.build_indrec env sigma ind in
let npars =
(* if a constructor of [ind] contains a recursive call, the scheme
is generalized only wrt recursively uniform parameters *)
if (Inductiveops.mis_is_recursive_subset [snd ind] mip.mind_recargs)
then
mib.mind_nparams_rec
else
mib.mind_nparams in
let make_elim s = Indrec.instantiate_indrec_scheme s npars elim_scheme in
let kelim = elim_sorts (mib,mip) in
(* in case the inductive has a type elimination, generates only one
induction scheme, the other ones share the same code with the
apropriate type *)
if List.mem InType kelim then
let elim = make_elim (new_sort_in_family InType) in
let cte = declare (mindstr^(Indrec.elimination_suffix InType)) elim None in
let c = mkConst cte in
let t = type_of_constant (Global.env()) cte in
List.iter (fun (sort,suff) ->
let (t',c') =
Indrec.instantiate_type_indrec_scheme (new_sort_in_family sort)
npars c t in
let _ = declare (mindstr^suff) c' (Some t') in ())
non_type_eliminations
else (* Impredicative or logical inductive definition *)
List.iter
(fun (sort,suff) ->
if List.mem sort kelim then
let elim = make_elim (new_sort_in_family sort) in
let _ = declare (mindstr^suff) elim None in ())
non_type_eliminations
(* bool eq declaration flag && eq dec declaration flag *)
let eq_flag = ref false
let _ =
declare_bool_option
{ optsync = true;
optname = "automatic declaration of boolean equality";
optkey = (SecondaryTable ("Equality","Scheme"));
optread = (fun () -> !eq_flag) ;
optwrite = (fun b -> eq_flag := b) }
(* boolean equality *)
let (inScheme,outScheme) =
declare_object {(default_object "EQSCHEME") with
cache_function = Ind_tables.cache_scheme;
load_function = (fun _ -> Ind_tables.cache_scheme);
subst_function = Auto_ind_decl.subst_in_constr;
export_function = Ind_tables.export_scheme }
let declare_eq_scheme sp =
let mib = Global.lookup_mind sp in
let nb_ind = Array.length mib.mind_packets in
let eq_array = Auto_ind_decl.make_eq_scheme sp in
try
for i=0 to (nb_ind-1) do
let cpack = Array.get mib.mind_packets i in
let nam = id_of_string ((string_of_id cpack.mind_typename)^"_beq")
in
let cst_entry = {const_entry_body = eq_array.(i);
const_entry_type = None;
const_entry_opaque = false;
const_entry_boxed = Flags.boxed_definitions() }
in
let cst_decl = (DefinitionEntry cst_entry),(IsDefinition Definition)
in
let cst = Declare.declare_constant nam cst_decl in
Lib.add_anonymous_leaf (inScheme ((sp,i),mkConst cst));
definition_message nam
done
with Not_found ->
error "Your type contains Parameters without a boolean equality"
(* decidability of eq *)
let (inBoolLeib,outBoolLeib) =
declare_object {(default_object "BOOLLIEB") with
cache_function = Ind_tables.cache_bl;
load_function = (fun _ -> Ind_tables.cache_bl);
subst_function = Auto_ind_decl.subst_in_constr;
export_function = Ind_tables.export_bool_leib }
let (inLeibBool,outLeibBool) =
declare_object {(default_object "LIEBBOOL") with
cache_function = Ind_tables.cache_lb;
load_function = (fun _ -> Ind_tables.cache_lb);
subst_function = Auto_ind_decl.subst_in_constr;
export_function = Ind_tables.export_leib_bool }
let (inDec,outDec) =
declare_object {(default_object "EQDEC") with
cache_function = Ind_tables.cache_dec;
load_function = (fun _ -> Ind_tables.cache_dec);
subst_function = Auto_ind_decl.subst_in_constr;
export_function = Ind_tables.export_dec_proof }
let start_hook = ref ignore
let set_start_hook = (:=) start_hook
let start_proof id kind c ?init_tac hook =
let sign = Global.named_context () in
let sign = clear_proofs sign in
!start_hook c;
Pfedit.start_proof id kind sign c ?init_tac:init_tac hook
let save id const (locality,kind) hook =
let {const_entry_body = pft;
const_entry_type = tpo;
const_entry_opaque = opacity } = const in
let k = logical_kind_of_goal_kind kind in
let l,r = match locality with
| Local when Lib.sections_are_opened () ->
let c = SectionLocalDef (pft, tpo, opacity) in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Local, VarRef id)
| Local | Global ->
let kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn) in
Pfedit.delete_current_proof ();
definition_message id;
hook l r
let save_hook = ref ignore
let set_save_hook f = save_hook := f
let save_named opacity =
let id,(const,persistence,hook) = Pfedit.cook_proof !save_hook in
let const = { const with const_entry_opaque = opacity } in
save id const persistence hook
let make_eq_decidability ind =
(* fetching data *)
let mib = Global.lookup_mind (fst ind) in
let nparams = mib.mind_nparams in
let nparrec = mib.mind_nparams_rec in
let lnonparrec,lnamesparrec =
context_chop (nparams-nparrec) mib.mind_params_ctxt in
let proof_name = (string_of_id(
Array.get mib.mind_packets (snd ind)).mind_typename)^"_eq_dec" in
let bl_name =(string_of_id(
Array.get mib.mind_packets (snd ind)).mind_typename)^"_dec_bl" in
let lb_name =(string_of_id(
Array.get mib.mind_packets (snd ind)).mind_typename)^"_dec_lb" in
(* main calls*)
if Ind_tables.check_bl_proof ind
then (message (bl_name^" is already declared."))
else (
start_proof (id_of_string bl_name)
(Global,Proof Theorem)
(Auto_ind_decl.compute_bl_goal ind lnamesparrec nparrec)
(fun _ _ -> ());
Auto_ind_decl.compute_bl_tact ind lnamesparrec nparrec;
save_named true;
Lib.add_anonymous_leaf
(inBoolLeib (ind,mkConst (Lib.make_con (id_of_string bl_name))))
(* definition_message (id_of_string bl_name) *)
);
if Ind_tables.check_lb_proof ind
then (message (lb_name^" is already declared."))
else (
start_proof (id_of_string lb_name)
(Global,Proof Theorem)
(Auto_ind_decl.compute_lb_goal ind lnamesparrec nparrec)
( fun _ _ -> ());
Auto_ind_decl.compute_lb_tact ind lnamesparrec nparrec;
save_named true;
Lib.add_anonymous_leaf
(inLeibBool (ind,mkConst (Lib.make_con (id_of_string lb_name))))
(* definition_message (id_of_string lb_name) *)
);
if Ind_tables.check_dec_proof ind
then (message (proof_name^" is already declared."))
else (
start_proof (id_of_string proof_name)
(Global,Proof Theorem)
(Auto_ind_decl.compute_dec_goal ind lnamesparrec nparrec)
( fun _ _ -> ());
Auto_ind_decl.compute_dec_tact ind lnamesparrec nparrec;
save_named true;
Lib.add_anonymous_leaf
(inDec (ind,mkConst (Lib.make_con (id_of_string proof_name))))
(* definition_message (id_of_string proof_name) *)
)
(* end of automated definition on ind*)
let declare_eliminations sp =
let mib = Global.lookup_mind sp in
if mib.mind_finite then begin
if (!eq_flag) then (declare_eq_scheme sp);
for i = 0 to Array.length mib.mind_packets - 1 do
declare_one_elimination (sp,i);
try
if (!eq_flag) then (make_eq_decidability (sp,i))
with _ ->
Pfedit.delete_current_proof();
message "Error while computing decidability scheme. Please report."
done;
end
(* 3b| Mutual inductive definitions *)
let compute_interning_datas env l nal typl impll =
let mk_interning_data na typ impls =
let idl, impl =
let impl =
compute_implicits_with_manual env typ (is_implicit_args ()) impls
in
let sub_impl,_ = list_chop (List.length l) impl in
let sub_impl' = List.filter is_status_implicit sub_impl in
(List.map name_of_implicit sub_impl', impl)
in
(na, (idl, impl, compute_arguments_scope typ)) in
(l, list_map3 mk_interning_data nal typl impll)
let declare_interning_data (_,impls) (df,c,scope) =
silently (Metasyntax.add_notation_interpretation df impls c) scope
let push_named_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_named (id,None,t) env)
env idl tl
let push_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_rel (Name id,None,t) env)
env idl tl
type inductive_expr = {
ind_name : identifier;
ind_arity : constr_expr;
ind_lc : (identifier * constr_expr) list
}
let minductive_message = function
| [] -> error "no inductive definition"
| [x] -> (pr_id x ++ str " is defined")
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are defined")
let check_all_names_different indl =
let ind_names = List.map (fun ind -> ind.ind_name) indl in
let cstr_names = list_map_append (fun ind -> List.map fst ind.ind_lc) indl in
let l = list_duplicates ind_names in
if l <> [] then raise (InductiveError (SameNamesTypes (List.hd l)));
let l = list_duplicates cstr_names in
if l <> [] then raise (InductiveError (SameNamesConstructors (List.hd l)));
let l = list_intersect ind_names cstr_names in
if l <> [] then raise (InductiveError (SameNamesOverlap l))
let mk_mltype_data evdref env assums arity indname =
let is_ml_type = is_sort env (evars_of !evdref) arity in
(is_ml_type,indname,assums)
let prepare_param = function
| (na,None,t) -> out_name na, LocalAssum t
| (na,Some b,_) -> out_name na, LocalDef b
let interp_ind_arity evdref env ind =
interp_type_evars evdref env ind.ind_arity
let interp_cstrs evdref env impls mldata arity ind =
let cnames,ctyps = List.split ind.ind_lc in
(* Complete conclusions of constructor types if given in ML-style syntax *)
let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in
(* Interpret the constructor types *)
let ctyps'', cimpls = List.split (List.map (interp_type_evars_impls ~evdref env ~impls) ctyps') in
(cnames, ctyps'', cimpls)
let interp_mutual paramsl indl notations finite =
check_all_names_different indl;
let env0 = Global.env() in
let evdref = ref (Evd.create_evar_defs Evd.empty) in
let (env_params, ctx_params), userimpls = interp_context_evars evdref env0 paramsl in
let indnames = List.map (fun ind -> ind.ind_name) indl in
(* Names of parameters as arguments of the inductive type (defs removed) *)
let assums = List.filter(fun (_,b,_) -> b=None) ctx_params in
let params = List.map (fun (na,_,_) -> out_name na) assums in
(* Interpret the arities *)
let arities = List.map (interp_ind_arity evdref env_params) indl in
let fullarities = List.map (fun c -> it_mkProd_or_LetIn c ctx_params) arities in
let env_ar = push_types env0 indnames fullarities in
let env_ar_params = push_rel_context ctx_params env_ar in
(* Compute interpretation metadatas *)
let indimpls = List.map (fun _ -> userimpls) fullarities in
let impls = compute_interning_datas env0 params indnames fullarities indimpls in
let mldatas = List.map2 (mk_mltype_data evdref env_params params) arities indnames in
let constructors =
States.with_heavy_rollback (fun () ->
(* Temporary declaration of notations and scopes *)
List.iter (declare_interning_data impls) notations;
(* Interpret the constructor types *)
list_map3 (interp_cstrs evdref env_ar_params impls) mldatas arities indl)
() in
(* Instantiate evars and check all are resolved *)
let evd,_ = consider_remaining_unif_problems env_params !evdref in
let sigma = evars_of evd in
let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map (nf_evar sigma) cl,impsl)) constructors in
let ctx_params = Sign.map_rel_context (nf_evar sigma) ctx_params in
let arities = List.map (nf_evar sigma) arities in
List.iter (check_evars env_params Evd.empty evd) arities;
Sign.iter_rel_context (check_evars env0 Evd.empty evd) ctx_params;
List.iter (fun (_,ctyps,_) ->
List.iter (check_evars env_ar_params Evd.empty evd) ctyps)
constructors;
(* Build the inductive entries *)
let entries = list_map3 (fun ind arity (cnames,ctypes,cimpls) -> {
mind_entry_typename = ind.ind_name;
mind_entry_arity = arity;
mind_entry_consnames = cnames;
mind_entry_lc = ctypes
}) indl arities constructors in
let impls =
let len = List.length ctx_params in
List.map (fun (_,_,impls) ->
userimpls, List.map (fun impls ->
userimpls @ (lift_implicits len impls)) impls) constructors
in
(* Build the mutual inductive entry *)
{ mind_entry_params = List.map prepare_param ctx_params;
mind_entry_record = false;
mind_entry_finite = finite;
mind_entry_inds = entries },
impls
let eq_constr_expr c1 c2 =
try let _ = Constrextern.check_same_type c1 c2 in true with _ -> false
(* Very syntactical equality *)
let eq_local_binder d1 d2 = match d1,d2 with
| LocalRawAssum (nal1,k1,c1), LocalRawAssum (nal2,k2,c2) ->
List.length nal1 = List.length nal2 && k1 = k2 &&
List.for_all2 (fun (_,na1) (_,na2) -> na1 = na2) nal1 nal2 &&
eq_constr_expr c1 c2
| LocalRawDef ((_,id1),c1), LocalRawDef ((_,id2),c2) ->
id1 = id2 && eq_constr_expr c1 c2
| _ ->
false
let eq_local_binders bl1 bl2 =
List.length bl1 = List.length bl2 && List.for_all2 eq_local_binder bl1 bl2
let extract_coercions indl =
let mkqid (_,((_,id),_)) = make_short_qualid id in
let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in
List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))
let extract_params indl =
let paramsl = List.map (fun (_,params,_,_) -> params) indl in
match paramsl with
| [] -> anomaly "empty list of inductive types"
| params::paramsl ->
if not (List.for_all (eq_local_binders params) paramsl) then error
"Parameters should be syntactically the same for each inductive type";
params
let prepare_inductive ntnl indl =
let indl =
List.map (fun ((_,indname),_,ar,lc) -> {
ind_name = indname;
ind_arity = ar;
ind_lc = List.map (fun (_,((_,id),t)) -> (id,t)) lc
}) indl in
List.fold_right Option.List.cons ntnl [], indl
let elim_flag = ref true
let _ =
declare_bool_option
{ optsync = true;
optname = "automatic declaration of eliminations";
optkey = (SecondaryTable ("Elimination","Schemes"));
optread = (fun () -> !elim_flag) ;
optwrite = (fun b -> elim_flag := b) }
let declare_mutual_with_eliminations isrecord mie impls =
let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
let (_,kn) = declare_mind isrecord mie in
list_iter_i (fun i (indimpls, constrimpls) ->
let ind = (kn,i) in
maybe_declare_manual_implicits false (IndRef ind)
(is_implicit_args()) indimpls;
list_iter_i
(fun j impls ->
maybe_declare_manual_implicits false (ConstructRef (ind, succ j))
(is_implicit_args()) impls)
constrimpls)
impls;
if_verbose ppnl (minductive_message names);
if !elim_flag then declare_eliminations kn;
kn
let build_mutual l finite =
let indl,ntnl = List.split l in
let paramsl = extract_params indl in
let coes = extract_coercions indl in
let notations,indl = prepare_inductive ntnl indl in
let mie,impls = interp_mutual paramsl indl notations finite in
(* Declare the mutual inductive block with its eliminations *)
ignore (declare_mutual_with_eliminations false mie impls);
(* Declare the possible notations of inductive types *)
List.iter (declare_interning_data ([],[])) notations;
(* Declare the coercions *)
List.iter (fun qid -> Class.try_add_new_coercion (locate qid) Global) coes
(* 3c| Fixpoints and co-fixpoints *)
let pr_rank = function
| 0 -> str "1st"
| 1 -> str "2nd"
| 2 -> str "3rd"
| n -> str ((string_of_int (n+1))^"th")
let recursive_message indexes = function
| [] -> anomaly "no recursive definition"
| [id] -> pr_id id ++ str " is recursively defined" ++
(match indexes with
| Some [|i|] -> str " (decreasing on "++pr_rank i++str " argument)"
| _ -> mt ())
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are recursively defined" ++
match indexes with
| Some a -> spc () ++ str "(decreasing respectively on " ++
prlist_with_sep pr_coma pr_rank (Array.to_list a) ++
str " arguments)"
| None -> mt ())
let corecursive_message _ = function
| [] -> error "no corecursive definition"
| [id] -> pr_id id ++ str " is corecursively defined"
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are corecursively defined")
let recursive_message isfix =
if isfix=Fixpoint then recursive_message else corecursive_message
(* An (unoptimized) function that maps preorders to partial orders...
Input: a list of associations (x,[y1;...;yn]), all yi distincts
and different of x, meaning x<=y1, ..., x<=yn
Output: a list of associations (x,Inr [y1;...;yn]), collecting all
distincts yi greater than x, _or_, (x, Inl y) meaning that
x is in the same class as y (in which case, x occurs
nowhere else in the association map)
partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list
*)
let rec partial_order = function
| [] -> []
| (x,xge)::rest ->
let rec browse res xge' = function
| [] ->
let res = List.map (function
| (z, Inr zge) when List.mem x zge -> (z, Inr (list_union zge xge'))
| r -> r) res in
(x,Inr xge')::res
| y::xge ->
let rec link y =
try match List.assoc y res with
| Inl z -> link z
| Inr yge ->
if List.mem x yge then
let res = List.remove_assoc y res in
let res = List.map (function
| (z, Inl t) ->
if t = y then (z, Inl x) else (z, Inl t)
| (z, Inr zge) ->
if List.mem y zge then
(z, Inr (list_add_set x (list_remove y zge)))
else
(z, Inr zge)) res in
browse ((y,Inl x)::res) xge' (list_union xge (list_remove x yge))
else
browse res (list_add_set y (list_union xge' yge)) xge
with Not_found -> browse res (list_add_set y xge') xge
in link y
in browse (partial_order rest) [] xge
let non_full_mutual_message x xge y yge kind rest =
let reason =
if List.mem x yge then
string_of_id y^" depends on "^string_of_id x^" but not conversely"
else if List.mem y xge then
string_of_id x^" depends on "^string_of_id y^" but not conversely"
else
string_of_id y^" and "^string_of_id x^" are not mutually dependent" in
let e = if rest <> [] then "e.g.: "^reason else reason in
let k = if kind=Fixpoint then "fixpoint" else "cofixpoint" in
let w =
if kind=Fixpoint then "Well-foundedness check may fail unexpectedly.\n"
else "" in
"Not a fully mutually defined "^k^"\n("^e^").\n"^w
let check_mutuality env kind fixl =
let names = List.map fst fixl in
let preorder =
List.map (fun (id,def) ->
(id, List.filter (fun id' -> id<>id' & occur_var env id' def) names))
fixl in
let po = partial_order preorder in
match List.filter (function (_,Inr _) -> true | _ -> false) po with
| (x,Inr xge)::(y,Inr yge)::rest ->
if_verbose warning (non_full_mutual_message x xge y yge kind rest)
| _ -> ()
type fixpoint_kind =
| IsFixpoint of (identifier located option * recursion_order_expr) list
| IsCoFixpoint
type fixpoint_expr = {
fix_name : identifier;
fix_binders : local_binder list;
fix_body : constr_expr;
fix_type : constr_expr
}
let interp_fix_context evdref env fix =
interp_context_evars evdref env fix.fix_binders
let interp_fix_ccl evdref (env,_) fix =
interp_type_evars evdref env fix.fix_type
let interp_fix_body evdref env_rec impls (_,ctx) fix ccl =
let env = push_rel_context ctx env_rec in
let body = interp_casted_constr_evars evdref env ~impls fix.fix_body ccl in
it_mkLambda_or_LetIn body ctx
let build_fix_type (_,ctx) ccl = it_mkProd_or_LetIn ccl ctx
let declare_fix boxed kind f def t imps =
let ce = {
const_entry_body = def;
const_entry_type = Some t;
const_entry_opaque = false;
const_entry_boxed = boxed
} in
let kn = declare_constant f (DefinitionEntry ce,IsDefinition kind) in
let gr = ConstRef kn in
maybe_declare_manual_implicits false gr (is_implicit_args ()) imps;
gr
let prepare_recursive_declaration fixnames fixtypes fixdefs =
let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
let names = List.map (fun id -> Name id) fixnames in
(Array.of_list names, Array.of_list fixtypes, Array.of_list defs)
(* Jump over let-bindings. *)
let rel_index n ctx =
list_index0 (Name n) (List.rev_map pi1 (List.filter (fun x -> pi2 x = None) ctx))
let rec unfold f b =
match f b with
| Some (x, b') -> x :: unfold f b'
| None -> []
let compute_possible_guardness_evidences (n,_) (_, fixctx) fixtype =
match n with
| Some (loc, n) -> [rel_index n fixctx]
| None ->
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem to worth the effort (except for huge mutual
fixpoints ?) *)
let len = List.length fixctx in
unfold (function x when x = len -> None
| n -> Some (n, succ n)) 0
let interp_recursive fixkind l boxed =
let env = Global.env() in
let fixl, ntnl = List.split l in
let kind = if fixkind <> IsCoFixpoint then Fixpoint else CoFixpoint in
let fixnames = List.map (fun fix -> fix.fix_name) fixl in
(* Interp arities allowing for unresolved types *)
let evdref = ref (Evd.create_evar_defs Evd.empty) in
let fixctxs, fiximps =
List.split (List.map (interp_fix_context evdref env) fixl) in
let fixccls = List.map2 (interp_fix_ccl evdref) fixctxs fixl in
let fixtypes = List.map2 build_fix_type fixctxs fixccls in
let env_rec = push_named_types env fixnames fixtypes in
(* Get interpretation metadatas *)
let impls = compute_interning_datas env [] fixnames fixtypes fiximps in
let notations = List.fold_right Option.List.cons ntnl [] in
(* Interp bodies with rollback because temp use of notations/implicit *)
let fixdefs =
States.with_heavy_rollback (fun () ->
List.iter (declare_interning_data impls) notations;
list_map3 (interp_fix_body evdref env_rec impls) fixctxs fixl fixccls)
() in
(* Instantiate evars and check all are resolved *)
let evd,_ = consider_remaining_unif_problems env_rec !evdref in
let fixdefs = List.map (nf_evar (evars_of evd)) fixdefs in
let fixtypes = List.map (nf_evar (evars_of evd)) fixtypes in
let evd = Typeclasses.resolve_typeclasses ~onlyargs:false ~fail:true env evd in
List.iter (check_evars env_rec Evd.empty evd) fixdefs;
List.iter (check_evars env Evd.empty evd) fixtypes;
check_mutuality env kind (List.combine fixnames fixdefs);
(* Build the fix declaration block *)
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let indexes, fixdecls =
match fixkind with
| IsFixpoint wfl ->
let possible_indexes =
list_map3 compute_possible_guardness_evidences wfl fixctxs fixtypes in
let indexes = search_guard dummy_loc env possible_indexes fixdecls in
Some indexes, list_map_i (fun i _ -> mkFix ((indexes,i),fixdecls)) 0 l
| IsCoFixpoint ->
None, list_map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 l
in
(* Declare the recursive definitions *)
ignore (list_map4 (declare_fix boxed kind) fixnames fixdecls fixtypes fiximps);
if_verbose ppnl (recursive_message kind indexes fixnames);
(* Declare notations *)
List.iter (declare_interning_data ([],[])) notations
let build_recursive l b =
let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in
let fixl = List.map (fun (((_,id),_,bl,typ,def),ntn) ->
({fix_name = id; fix_binders = bl; fix_body = def; fix_type = typ},ntn))
l in
interp_recursive (IsFixpoint g) fixl b
let build_corecursive l b =
let fixl = List.map (fun (((_,id),bl,typ,def),ntn) ->
({fix_name = id; fix_binders = bl; fix_body = def; fix_type = typ},ntn))
l in
interp_recursive IsCoFixpoint fixl b
(* 3d| Schemes *)
let rec split_scheme l =
let env = Global.env() in
match l with
| [] -> [],[]
| (Some id,t)::q -> let l1,l2 = split_scheme q in
( match t with
| InductionScheme (x,y,z) -> ((id,x,y,z)::l1),l2
| EqualityScheme x -> l1,(x::l2)
)
(*
if no name has been provided, we build one from the types of the ind
requested
*)
| (None,t)::q ->
let l1,l2 = split_scheme q in
( match t with
| InductionScheme (x,y,z) ->
let ind = mkInd (Nametab.inductive_of_reference y) in
let sort_of_ind = family_of_sort (Typing.sort_of env Evd.empty ind)
in
let z' = family_of_sort (interp_sort z) in
let suffix = (
match sort_of_ind with
| InProp ->
if x then (match z' with
| InProp -> "_ind_nodep"
| InSet -> "_rec_nodep"
| InType -> "_rect_nodep")
else ( match z' with
| InProp -> "_ind"
| InSet -> "_rec"
| InType -> "_rect" )
| _ ->
if x then (match z' with
| InProp -> "_ind"
| InSet -> "_rec"
| InType -> "_rect" )
else (match z' with
| InProp -> "_ind_nodep"
| InSet -> "_rec_nodep"
| InType -> "_rect_nodep")
) in
let newid = (string_of_id (Pcoq.coerce_global_to_id y))^suffix in
let newref = (dummy_loc,id_of_string newid) in
((newref,x,y,z)::l1),l2
| EqualityScheme x -> l1,(x::l2)
)
let build_induction_scheme lnamedepindsort =
let lrecnames = List.map (fun ((_,f),_,_,_) -> f) lnamedepindsort
and sigma = Evd.empty
and env0 = Global.env() in
let lrecspec =
List.map
(fun (_,dep,indid,sort) ->
let ind = Nametab.inductive_of_reference indid in
let (mib,mip) = Global.lookup_inductive ind in
(ind,mib,mip,dep,interp_elimination_sort sort))
lnamedepindsort
in
let listdecl = Indrec.build_mutual_indrec env0 sigma lrecspec in
let rec declare decl fi lrecref =
let decltype = Retyping.get_type_of env0 Evd.empty decl in
let decltype = refresh_universes decltype in
let ce = { const_entry_body = decl;
const_entry_type = Some decltype;
const_entry_opaque = false;
const_entry_boxed = Flags.boxed_definitions() } in
let kn = declare_constant fi (DefinitionEntry ce, IsDefinition Scheme) in
ConstRef kn :: lrecref
in
let _ = List.fold_right2 declare listdecl lrecnames [] in
if_verbose ppnl (recursive_message Fixpoint None lrecnames)
let build_scheme l =
let ischeme,escheme = split_scheme l in
(* we want 1 kind of scheme at a time so we check if the user
tried to declare different schemes at once *)
if (ischeme <> []) && (escheme <> [])
then
error "Do not declare equality and induction scheme at the same time."
else (
if ischeme <> [] then build_induction_scheme ischeme;
List.iter ( fun indname ->
let ind = Nametab.inductive_of_reference indname
in declare_eq_scheme (fst ind);
try
make_eq_decidability ind
with _ ->
Pfedit.delete_current_proof();
message "Error while computing decidability scheme. Please report."
) escheme
)
let list_split_rev_at index l =
let rec aux i acc = function
hd :: tl when i = index -> acc, tl
| hd :: tl -> aux (succ i) (hd :: acc) tl
| [] -> failwith "list_split_at: Invalid argument"
in aux 0 [] l
let fold_left' f = function
[] -> raise (Invalid_argument "fold_right'")
| hd :: tl -> List.fold_left f hd tl
let build_combined_scheme name schemes =
let env = Global.env () in
(* let nschemes = List.length schemes in *)
let find_inductive ty =
let (ctx, arity) = decompose_prod ty in
let (_, last) = List.hd ctx in
match kind_of_term last with
| App (ind, args) -> ctx, destInd ind, Array.length args
| _ -> ctx, destInd last, 0
in
let defs =
List.map (fun x ->
let refe = Ident x in
let qualid = qualid_of_reference refe in
let cst = try
Nametab.locate_constant (snd qualid)
with Not_found -> error ((string_of_qualid (snd qualid))^" is not declared")
in
let ty = Typeops.type_of_constant env cst in
qualid, cst, ty)
schemes
in
let (qid, c, t) = List.hd defs in
let ctx, ind, nargs = find_inductive t in
(* Number of clauses, including the predicates quantification *)
let prods = nb_prod t - (nargs + 1) in
let coqand = Coqlib.build_coq_and () and coqconj = Coqlib.build_coq_conj () in
let relargs = rel_vect 0 prods in
let concls = List.rev_map
(fun (_, cst, t) ->
mkApp(mkConst cst, relargs),
snd (decompose_prod_n prods t)) defs in
let concl_bod, concl_typ =
fold_left'
(fun (accb, acct) (cst, x) ->
mkApp (coqconj, [| x; acct; cst; accb |]),
mkApp (coqand, [| x; acct |])) concls
in
let ctx, _ =
list_split_rev_at prods
(List.rev_map (fun (x, y) -> x, None, y) ctx) in
let typ = it_mkProd_wo_LetIn concl_typ ctx in
let body = it_mkLambda_or_LetIn concl_bod ctx in
let ce = { const_entry_body = body;
const_entry_type = Some typ;
const_entry_opaque = false;
const_entry_boxed = Flags.boxed_definitions() } in
let _ = declare_constant (snd name) (DefinitionEntry ce, IsDefinition Scheme) in
if_verbose ppnl (recursive_message Fixpoint None [snd name])
(* 4| Goal declaration *)
(* 4.1| Support for mutually proved theorems *)
let retrieve_first_recthm = function
| VarRef id ->
(pi2 (Global.lookup_named id),variable_opacity id)
| ConstRef cst ->
let {const_body=body;const_opaque=opaq} =
Global.lookup_constant cst in
(Option.map Declarations.force body,opaq)
| _ -> assert false
let compute_proof_name = function
| Some (loc,id) ->
(* We check existence here: it's a bit late at Qed time *)
if Nametab.exists_cci (Lib.make_path id) or is_section_variable id then
user_err_loc (loc,"",pr_id id ++ str " already exists");
id
| None ->
next_global_ident_away false (id_of_string "Unnamed_thm")
(Pfedit.get_all_proof_names ())
let save_remaining_recthms (local,kind) body opaq i (id,(t_i,imps)) =
match body with
| None ->
(match local with
| Local ->
let impl=false and keep=false in (* copy values from Vernacentries *)
let k = IsAssumption Conjectural in
let c = SectionLocalAssum (t_i,impl,keep) in
let _ = declare_variable id (Lib.cwd(),c,k) in
(Local,VarRef id,imps)
| Global ->
let k = IsAssumption Conjectural in
let kn = declare_constant id (ParameterEntry (t_i,false), k) in
(Global,ConstRef kn,imps))
| Some body ->
let k = logical_kind_of_goal_kind kind in
let body_i = match kind_of_term body with
| Fix ((nv,0),decls) -> mkFix ((nv,i),decls)
| CoFix (0,decls) -> mkCoFix (i,decls)
| _ -> anomaly "Not a proof by induction" in
match local with
| Local ->
let c = SectionLocalDef (body_i, Some t_i, opaq) in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Local,VarRef id,imps)
| Global ->
let const =
{ const_entry_body = body_i;
const_entry_type = Some t_i;
const_entry_opaque = opaq;
const_entry_boxed = false (* copy of what cook_proof does *)} in
let kn = declare_constant id (DefinitionEntry const, k) in
(Global,ConstRef kn,imps)
let look_for_mutual_statements thms =
if List.tl thms <> [] then
(* More than one statement: we look for a common inductive hyp or a *)
(* common coinductive conclusion *)
let n = List.length thms in
let inds = List.map (fun (id,(t,_) as x) ->
let (hyps,ccl) = splay_prod_assum (Global.env()) Evd.empty t in
let whnf_hyp_hds = map_rel_context_with_binders
(fun i c -> fst (whd_betadeltaiota_stack (Global.env()) Evd.empty (lift i c)))
hyps in
let ind_hyps =
List.filter ((<>) None) (list_map_i (fun i (_,b,t) ->
match kind_of_term t with
| Ind (kn,_ as ind) when
let mind = Global.lookup_mind kn in
mind.mind_ntypes = n & mind.mind_finite & b = None ->
Some (ind,x,i)
| _ ->
None) 1 whnf_hyp_hds) in
let ind_ccl =
let cclenv = push_rel_context hyps (Global.env()) in
let whnf_ccl,_ = whd_betadeltaiota_stack cclenv Evd.empty ccl in
match kind_of_term whnf_ccl with
| Ind (kn,_ as ind) when
let mind = Global.lookup_mind kn in
mind.mind_ntypes = n & not mind.mind_finite ->
Some (ind,x,0)
| _ ->
None in
ind_hyps,ind_ccl) thms in
let inds_hyps,ind_ccls = List.split inds in
let is_same_ind kn = function Some ((kn',_),_,_) -> kn = kn' | _ -> false in
let compare_kn ((kn,i),_,_) ((kn,i'),_,_) = i - i' in
(* Check if all conclusions are coinductive in the same type *)
let same_indccl =
match ind_ccls with
| (Some ((kn,_),_,_ as x))::rest when List.for_all (is_same_ind kn) rest
-> Some (x :: List.map Option.get rest)
| _ -> None in
(* Check if some hypotheses are inductive in the same type *)
let common_same_indhyp =
let rec find_same_ind inds =
match inds with
| []::_ ->
[]
| (Some ((kn,_),_,_) as x :: hyps_thms1)::other_thms ->
let others' = List.map (List.filter (is_same_ind kn)) other_thms in
(x,others')::find_same_ind (hyps_thms1::other_thms)
| (None::hyps_thm1)::other_thms ->
find_same_ind (hyps_thm1::other_thms)
| [] ->
assert false in
find_same_ind inds_hyps in
let common_inds,finite =
match same_indccl, common_same_indhyp with
| None, [(x,rest)] when List.for_all (fun l -> List.length l = 1) rest ->
(* One occurrence of common inductive hyps and no common coind ccls *)
Option.get x::List.map (fun x -> Option.get (List.hd x)) rest,
false
| Some indccl, [] ->
(* One occurrence of common coind ccls and no common inductive hyps *)
indccl, true
| _ ->
error
("Cannot find a common mutual inductive premise or coinductive" ^
" conclusion in the statements") in
let ordered_inds = List.sort compare_kn common_inds in
list_iter_i (fun i' ((kn,i),_,_) ->
if i <> i' then
error
("Cannot find distinct (co)inductive types of the same family" ^
"of mutual (co)inductive types"))
ordered_inds;
let nl,thms = List.split (List.map (fun (_,x,i) -> (i,x)) ordered_inds) in
let rec_tac =
if finite then
match List.map (fun (id,(t,_)) -> (id,t)) thms with
| (id,_)::l -> Hiddentac.h_mutual_cofix true id l
| _ -> assert false
else
match List.map2 (fun (id,(t,_)) n -> (id,n,t)) thms nl with
| (id,n,_)::l -> Hiddentac.h_mutual_fix true id n l
| _ -> assert false in
Some rec_tac,thms
else
None, thms
(* 4.2| General support for goals *)
let start_proof_com kind thms hook =
let thms = List.map (fun (sopt,(bl,t)) ->
(compute_proof_name sopt,
interp_type_evars_impls (Global.env()) (generalize_constr_expr t bl)))
thms in
let rec_tac,thms = look_for_mutual_statements thms in
match thms with
| [] -> anomaly "No proof to start"
| (id,(t,imps))::other_thms ->
let hook strength ref =
let other_thms_data =
if other_thms = [] then [] else
(* there are several theorems defined mutually *)
let body,opaq = retrieve_first_recthm ref in
list_map_i (save_remaining_recthms kind body opaq) 1 other_thms in
let thms_data = (strength,ref,imps)::other_thms_data in
List.iter (fun (strength,ref,imps) ->
maybe_declare_manual_implicits false ref (is_implicit_args ()) imps;
hook strength ref) thms_data in
start_proof id kind t ?init_tac:rec_tac hook
let check_anonymity id save_ident =
if atompart_of_id id <> "Unnamed_thm" then
error "This command can only be used for unnamed theorem"
(*
message("Overriding name "^(string_of_id id)^" and using "^save_ident)
*)
let save_anonymous opacity save_ident =
let id,(const,persistence,hook) = Pfedit.cook_proof !save_hook in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
save save_ident const persistence hook
let save_anonymous_with_strength kind opacity save_ident =
let id,(const,_,hook) = Pfedit.cook_proof !save_hook in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
(* we consider that non opaque behaves as local for discharge *)
save save_ident const (Global, Proof kind) hook
let admit () =
let (id,k,typ,hook) = Pfedit.current_proof_statement () in
(* Contraire aux besoins d'interactivité...
if k <> IsGlobal (Proof Conjecture) then
error "Only statements declared as conjecture can be admitted";
*)
let kn =
declare_constant id (ParameterEntry (typ,false), IsAssumption Conjectural) in
Pfedit.delete_current_proof ();
assumption_message id;
hook Global (ConstRef kn)
let get_current_context () =
try Pfedit.get_current_goal_context ()
with e when Logic.catchable_exception e ->
(Evd.empty, Global.env())
|