1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Pp
open Util
open Options
open Term
open Termops
open Declarations
open Inductive
open Environ
open Reduction
open Tacred
open Declare
open Names
open Nameops
open Coqast
open Ast
open Library
open Libobject
open Astterm
open Proof_type
open Tacmach
open Safe_typing
open Nametab
open Typeops
open Indtypes
let mkCastC(c,t) = ope("CAST",[c;t])
let mkLambdaC(x,a,b) = ope("LAMBDA",[a;slam(Some x,b)])
let mkLambdaCit = List.fold_right (fun (x,a) b -> mkLambdaC(x,a,b))
let mkProdC (x,a,b) = ope("PROD",[a;slam(Some x,b)])
let mkProdCit = List.fold_right (fun (x,a) b -> mkProdC(x,a,b))
(* Commands of the interface *)
(* 1| Constant definitions *)
let constant_entry_of_com (com,comtypopt,opacity) =
let sigma = Evd.empty in
let env = Global.env() in
match comtypopt with
None ->
{ const_entry_body = interp_constr sigma env com;
const_entry_type = None;
const_entry_opaque = opacity }
| Some comtyp ->
let typ = interp_type sigma env comtyp in
{ const_entry_body = interp_casted_constr sigma env com typ;
const_entry_type = Some typ;
const_entry_opaque = opacity }
let red_constant_entry ce = function
| None -> ce
| Some red ->
let body = ce.const_entry_body in
{ ce with const_entry_body =
reduction_of_redexp red (Global.env()) Evd.empty body }
let constr_of_constr_entry ce =
match ce.const_entry_type with
| None -> ce.const_entry_body
| Some t -> mkCast (ce.const_entry_body, t)
let declare_global_definition ident ce n local =
let sp = declare_constant ident (ConstantEntry ce,n) in
if local then
wARNING [< pr_id ident; 'sTR" is declared as a global definition" >];
if_verbose message ((string_of_id ident) ^ " is defined");
ConstRef sp
let definition_body_red red_option ident (local,n) com comtypeopt =
let ce = constant_entry_of_com (com,comtypeopt,false) in
let ce' = red_constant_entry ce red_option in
match n with
| NeverDischarge -> declare_global_definition ident ce' n local
| DischargeAt (disch_sp,_) ->
if Lib.is_section_p disch_sp then begin
let c = constr_of_constr_entry ce' in
let sp = declare_variable ident (Lib.cwd(),SectionLocalDef c,n) in
if_verbose message ((string_of_id ident) ^ " is defined");
if Pfedit.refining () then
mSGERRNL [< 'sTR"Warning: Local definition "; pr_id ident;
'sTR" is not visible from current goals" >];
VarRef ident
end
else
declare_global_definition ident ce' n true
| NotDeclare ->
anomalylabstrm "Command.definition_body_red"
[<'sTR "Strength NotDeclare not for Definition, only for Let" >]
let definition_body = definition_body_red None
let syntax_definition ident com =
let c = interp_rawconstr Evd.empty (Global.env()) com in
Syntax_def.declare_syntactic_definition ident c;
if_verbose message ((string_of_id ident) ^ " is now a syntax macro")
(* 2| Variable definitions *)
let parameter_def_var ident c =
let c = interp_type Evd.empty (Global.env()) c in
let sp = declare_parameter ident c in
if_verbose message ((string_of_id ident) ^ " is assumed");
sp
let declare_global_assumption ident c =
let sp = parameter_def_var ident c in
wARNING [< pr_id ident; 'sTR" is declared as a parameter";
'sTR" because it is at a global level" >];
ConstRef sp
let hypothesis_def_var is_refining ident n c =
match n with
| NeverDischarge -> declare_global_assumption ident c
| DischargeAt (disch_sp,_) ->
if Lib.is_section_p disch_sp then begin
let t = interp_type Evd.empty (Global.env()) c in
let sp = declare_variable ident (Lib.cwd(),SectionLocalAssum t,n) in
if_verbose message ((string_of_id ident) ^ " is assumed");
if is_refining then
mSGERRNL [< 'sTR"Warning: Variable "; pr_id ident;
'sTR" is not visible from current goals" >];
VarRef ident
end
else
declare_global_assumption ident c
| NotDeclare ->
anomalylabstrm "Command.hypothesis_def_var"
[<'sTR "Strength NotDeclare not for Variable, only for Let" >]
(* 3| Mutual Inductive definitions *)
let minductive_message = function
| [] -> error "no inductive definition"
| [x] -> [< pr_id x; 'sTR " is defined">]
| l -> hOV 0 [< prlist_with_sep pr_coma pr_id l;
'sPC; 'sTR "are defined">]
let recursive_message v =
match Array.length v with
| 0 -> error "no recursive definition"
| 1 -> [< Printer.pr_global v.(0); 'sTR " is recursively defined">]
| _ -> hOV 0 [< prvect_with_sep pr_coma Printer.pr_global v;
'sPC; 'sTR "are recursively defined">]
let corecursive_message v =
match Array.length v with
| 0 -> error "no corecursive definition"
| 1 -> [< Printer.pr_global v.(0); 'sTR " is corecursively defined">]
| _ -> hOV 0 [< prvect_with_sep pr_coma Printer.pr_global v;
'sPC; 'sTR "are corecursively defined">]
let interp_mutual lparams lnamearconstrs finite =
let allnames =
List.fold_left
(fun acc (id,_,l) -> id::(List.map fst l)@acc) [] lnamearconstrs in
if not (list_distinct allnames) then
error "Two inductive objects have the same name";
let nparams = List.length lparams
and sigma = Evd.empty
and env0 = Global.env() in
let env_params, params =
List.fold_left
(fun (env, params) (id,t) ->
let p = interp_type sigma env t in
(Termops.push_rel_assum (Name id,p) env, (Name id,None,p)::params))
(env0,[]) lparams
in
(* Pour permettre à terme les let-in dans les params *)
let params' =
List.map (fun (na,_,p) ->
let id = match na with
| Name id -> id
| Anonymous -> anomaly "Unnamed inductive variable"
in (id, LocalAssum p)) params
in
let (ind_env,ind_impls,arityl) =
List.fold_left
(fun (env, ind_impls, arl) (recname, arityc,_) ->
let arity = interp_type sigma env_params arityc in
let fullarity =
prod_it arity (List.map (fun (id,_,ty) -> (id,ty)) params) in
let env' = Termops.push_rel_assum (Name recname,fullarity) env in
let impls =
if Impargs.is_implicit_args()
then Impargs.compute_implicits env_params fullarity
else [] in
(env', (recname,impls)::ind_impls, (arity::arl)))
(env0, [], []) lnamearconstrs
in
let ind_env_params = push_rel_context params ind_env in
let mispecvec =
List.map2
(fun ar (name,_,lname_constr) ->
let constrnames, bodies = List.split lname_constr in
let constrs =
List.map
(interp_type_with_implicits sigma ind_env_params ind_impls) bodies
in
{ mind_entry_nparams = nparams;
mind_entry_params = params';
mind_entry_typename = name;
mind_entry_arity = ar;
mind_entry_consnames = constrnames;
mind_entry_lc = constrs })
(List.rev arityl) lnamearconstrs
in
{ mind_entry_finite = finite; mind_entry_inds = mispecvec }
let declare_mutual_with_eliminations mie =
let lrecnames =
List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
let sp = declare_mind mie in
if_verbose pPNL (minductive_message lrecnames);
Indrec.declare_eliminations sp;
sp
let build_mutual lparams lnamearconstrs finite =
let mie = interp_mutual lparams lnamearconstrs finite in
let _ = declare_mutual_with_eliminations mie in ()
(* try to find non recursive definitions *)
let list_chop_hd i l = match list_chop i l with
| (l1,x::l2) -> (l1,x,l2)
| _ -> assert false
let collect_non_rec env =
let rec searchrec lnonrec lnamerec ldefrec larrec nrec =
try
let i =
list_try_find_i
(fun i f ->
if List.for_all (fun def -> not (occur_var env f def)) ldefrec
then i else failwith "try_find_i")
0 lnamerec
in
let (lf1,f,lf2) = list_chop_hd i lnamerec in
let (ldef1,def,ldef2) = list_chop_hd i ldefrec in
let (lar1,ar,lar2) = list_chop_hd i larrec in
let newlnv =
try
match list_chop i nrec with
| (lnv1,_::lnv2) -> (lnv1@lnv2)
| _ -> [] (* nrec=[] for cofixpoints *)
with Failure "list_chop" -> []
in
searchrec ((f,mkCast (def,body_of_type ar))::lnonrec)
(lf1@lf2) (ldef1@ldef2) (lar1@lar2) newlnv
with Failure "try_find_i" ->
(List.rev lnonrec,
(Array.of_list lnamerec, Array.of_list ldefrec,
Array.of_list larrec, Array.of_list nrec))
in
searchrec []
let build_recursive lnameargsardef =
let lrecnames = List.map (fun (f,_,_,_) -> f) lnameargsardef
and sigma = Evd.empty
and env0 = Global.env()
and nv = Array.of_list (List.map (fun (_,la,_,_) -> (List.length la) -1)
lnameargsardef)
in
let fs = States.freeze() in
let (rec_sign,arityl) =
try
List.fold_left
(fun (env,arl) (recname,lparams,arityc,_) ->
let raw_arity = mkProdCit lparams arityc in
let arity = interp_type sigma env0 raw_arity in
let _ = declare_variable recname
(Lib.cwd(),SectionLocalAssum arity, NeverDischarge) in
(Environ.push_named_decl (recname,None,arity) env, (arity::arl)))
(env0,[]) lnameargsardef
with e ->
States.unfreeze fs; raise e in
let arityl = List.rev arityl in
let recdef =
try
List.map2
(fun (_,lparams,_,def) arity ->
interp_casted_constr sigma rec_sign (mkLambdaCit lparams def) arity)
lnameargsardef arityl
with e ->
States.unfreeze fs; raise e
in
States.unfreeze fs;
let (lnonrec,(namerec,defrec,arrec,nvrec)) =
collect_non_rec env0 lrecnames recdef arityl (Array.to_list nv) in
let n = NeverDischarge in
let recvec =
Array.map (subst_vars (List.rev (Array.to_list namerec))) defrec in
let rec declare i fi =
let ce =
{ const_entry_body =
mkFix ((nvrec,i),
(Array.map (fun id -> Name id) namerec,
arrec,
recvec));
const_entry_type = None;
const_entry_opaque = false } in
let sp = declare_constant fi (ConstantEntry ce, n) in
(ConstRef sp)
in
(* declare the recursive definitions *)
let lrefrec = Array.mapi declare namerec in
if_verbose pPNL (recursive_message lrefrec);
(* The others are declared as normal definitions *)
let var_subst id = (id, global_reference id) in
let _ =
List.fold_left
(fun subst (f,def) ->
let ce = { const_entry_body = replace_vars subst def;
const_entry_type = None;
const_entry_opaque = false } in
let _ = declare_constant f (ConstantEntry ce,n) in
warning ((string_of_id f)^" is non-recursively defined");
(var_subst f) :: subst)
(List.map var_subst (Array.to_list namerec))
lnonrec
in
()
let build_corecursive lnameardef =
let lrecnames = List.map (fun (f,_,_) -> f) lnameardef
and sigma = Evd.empty
and env0 = Global.env() in
let fs = States.freeze() in
let (rec_sign,arityl) =
try
List.fold_left
(fun (env,arl) (recname,arityc,_) ->
let arj = type_judgment_of_rawconstr Evd.empty env0 arityc in
let arity = arj.utj_val in
let _ = declare_variable recname
(Lib.cwd(),SectionLocalAssum arj.utj_val,NeverDischarge) in
(Environ.push_named_decl (recname,None,arity) env, (arity::arl)))
(env0,[]) lnameardef
with e ->
States.unfreeze fs; raise e in
let arityl = List.rev arityl in
let recdef =
try
List.map (fun (_,arityc,def) ->
interp_constr sigma rec_sign
(mkCastC(def,arityc)))
lnameardef
with e ->
States.unfreeze fs; raise e
in
States.unfreeze fs;
let (lnonrec,(namerec,defrec,arrec,_)) =
collect_non_rec env0 lrecnames recdef arityl [] in
let n = NeverDischarge in
let recvec =
Array.map (subst_vars (List.rev (Array.to_list namerec))) defrec in
let rec declare i fi =
let ce =
{ const_entry_body =
mkCoFix (i, (Array.map (fun id -> Name id) namerec,
arrec,
recvec));
const_entry_type = None;
const_entry_opaque = false }
in
let sp = declare_constant fi (ConstantEntry ce,n) in
(ConstRef sp)
in
let lrefrec = Array.mapi declare namerec in
if_verbose pPNL (corecursive_message lrefrec);
let var_subst id = (id, global_reference id) in
let _ =
List.fold_left
(fun subst (f,def) ->
let ce = { const_entry_body = replace_vars subst def;
const_entry_type = None;
const_entry_opaque = false } in
let _ = declare_constant f (ConstantEntry ce,n) in
warning ((string_of_id f)^" is non-recursively defined");
(var_subst f) :: subst)
(List.map var_subst (Array.to_list namerec))
lnonrec
in
()
let inductive_of_ident qid =
match Nametab.global dummy_loc qid with
| IndRef ind -> ind
| ref -> errorlabstrm "inductive_of_ident"
[< pr_id (id_of_global (Global.env()) ref);
'sPC; 'sTR "is not an inductive type">]
let build_scheme lnamedepindsort =
let lrecnames = List.map (fun (f,_,_,_) -> f) lnamedepindsort
and sigma = Evd.empty
and env0 = Global.env() in
let lrecspec =
List.map
(fun (_,dep,indid,sort) ->
let ind = inductive_of_ident indid in
let (mib,mip) = Global.lookup_inductive ind in
(ind,mib,mip,dep,interp_elimination_sort sort))
lnamedepindsort
in
let n = NeverDischarge in
let listdecl = Indrec.build_mutual_indrec env0 sigma lrecspec in
let rec declare decl fi lrecref =
let ce = { const_entry_body = decl;
const_entry_type = None;
const_entry_opaque = false } in
let sp = declare_constant fi (ConstantEntry ce,n) in
ConstRef sp :: lrecref
in
let lrecref = List.fold_right2 declare listdecl lrecnames [] in
if_verbose pPNL (recursive_message (Array.of_list lrecref))
let start_proof_com sopt stre com =
let env = Global.env () in
let sign = Global.named_context () in
let id = match sopt with
| Some id ->
(* We check existence here: it's a bit late at Qed time *)
if Nametab.exists_cci (Lib.make_path id) then
errorlabstrm "start_proof" [< pr_id id; 'sTR " already exists" >];
id
| None ->
next_ident_away (id_of_string "Unnamed_thm")
(Pfedit.get_all_proof_names ())
in
let c = interp_type Evd.empty env com in
let _ = Typeops.infer_type env c in
Pfedit.start_proof id stre sign c
let apply_tac_not_declare id pft = function
| None -> error "Type of Let missing"
| Some typ ->
let cutt = vernac_tactic ("Cut",[Constr typ])
and exat = vernac_tactic ("Exact",[Constr pft]) in
Pfedit.delete_current_proof ();
Pfedit.by (tclTHENS cutt [introduction id;exat])
let save id const strength =
let {const_entry_body = pft;
const_entry_type = tpo;
const_entry_opaque = opacity } = const in
begin match strength with
| DischargeAt (disch_sp,_) when Lib.is_section_p disch_sp && not opacity ->
let c = constr_of_constr_entry const in
let _ = declare_variable id (Lib.cwd(),SectionLocalDef c,strength)
in ()
| NeverDischarge | DischargeAt _ ->
let _ = declare_constant id (ConstantEntry const,strength)
in ()
| NotDeclare -> apply_tac_not_declare id pft tpo
end;
if not (strength = NotDeclare) then
begin
Pfedit.delete_current_proof ();
if_verbose message ((string_of_id id) ^ " is defined")
end
let save_named opacity =
let id,(const,strength) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
save id const strength
let check_anonymity id save_ident =
if atompart_of_id id <> "Unnamed_thm" then
error "This command can only be used for unnamed theorem"
(*
message("Overriding name "^(string_of_id id)^" and using "^save_ident)
*)
let save_anonymous opacity save_ident =
let id,(const,strength) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
save save_ident const strength
let save_anonymous_with_strength strength opacity save_ident =
let id,(const,_) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
save save_ident const strength
let get_current_context () =
try Pfedit.get_current_goal_context ()
with e when Logic.catchable_exception e ->
(Evd.empty, Global.env())
|