1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Flags
open Term
open Vars
open Context
open Termops
open Entries
open Environ
open Redexpr
open Declare
open Names
open Libnames
open Globnames
open Nameops
open Constrexpr
open Constrexpr_ops
open Topconstr
open Constrintern
open Nametab
open Impargs
open Reductionops
open Indtypes
open Decl_kinds
open Pretyping
open Evarutil
open Evarconv
open Indschemes
open Misctypes
open Vernacexpr
let rec under_binders env f n c =
if Int.equal n 0 then f env Evd.empty c else
match kind_of_term c with
| Lambda (x,t,c) ->
mkLambda (x,t,under_binders (push_rel (x,None,t) env) f (n-1) c)
| LetIn (x,b,t,c) ->
mkLetIn (x,b,t,under_binders (push_rel (x,Some b,t) env) f (n-1) c)
| _ -> assert false
let rec complete_conclusion a cs = function
| CProdN (loc,bl,c) -> CProdN (loc,bl,complete_conclusion a cs c)
| CLetIn (loc,b,t,c) -> CLetIn (loc,b,t,complete_conclusion a cs c)
| CHole (loc, k) ->
let (has_no_args,name,params) = a in
if not has_no_args then
user_err_loc (loc,"",
strbrk"Cannot infer the non constant arguments of the conclusion of "
++ pr_id cs ++ str ".");
let args = List.map (fun id -> CRef(Ident(loc,id))) params in
CAppExpl (loc,(None,Ident(loc,name)),List.rev args)
| c -> c
(* Commands of the interface *)
(* 1| Constant definitions *)
let red_constant_entry n ce = function
| None -> ce
| Some red ->
let proof_out = ce.const_entry_body in
{ ce with const_entry_body = Future.chain ~id:"red_constant_entry"
proof_out (fun (body,eff) ->
under_binders (Global.env())
(fst (reduction_of_red_expr red)) n body,eff) }
let interp_definition bl red_option c ctypopt =
let env = Global.env() in
let evdref = ref Evd.empty in
let impls, ((env_bl, ctx), imps1) = interp_context_evars evdref env bl in
let nb_args = List.length ctx in
let imps,ce =
match ctypopt with
None ->
let c, imps2 = interp_constr_evars_impls ~impls evdref env_bl c in
let body = nf_evar !evdref (it_mkLambda_or_LetIn c ctx) in
imps1@(Impargs.lift_implicits nb_args imps2),
{ const_entry_body = Future.from_val (body,Declareops.no_seff);
const_entry_secctx = None;
const_entry_type = None;
const_entry_opaque = false;
const_entry_inline_code = false
}
| Some ctyp ->
let ty, impsty = interp_type_evars_impls ~impls evdref env_bl ctyp in
let c, imps2 = interp_casted_constr_evars_impls ~impls evdref env_bl c ty in
let body = nf_evar !evdref (it_mkLambda_or_LetIn c ctx) in
let typ = nf_evar !evdref (it_mkProd_or_LetIn ty ctx) in
let beq b1 b2 = if b1 then b2 else not b2 in
let impl_eq (x1, y1, z1) (x2, y2, z2) = beq x1 x2 && beq y1 y2 && beq z1 z2 in
(* Check that all implicit arguments inferable from the term is inferable from the type *)
if not (try List.for_all (fun (key,va) -> impl_eq (List.assoc key impsty) va) imps2 with Not_found -> false)
then msg_warning (strbrk "Implicit arguments declaration relies on type." ++
spc () ++ strbrk "The term declares more implicits than the type here.");
imps1@(Impargs.lift_implicits nb_args impsty),
{ const_entry_body = Future.from_val(body,Declareops.no_seff);
const_entry_secctx = None;
const_entry_type = Some typ;
const_entry_opaque = false;
const_entry_inline_code = false
}
in
red_constant_entry (rel_context_length ctx) ce red_option, !evdref, imps
let check_definition (ce, evd, imps) =
check_evars_are_solved (Global.env ()) Evd.empty evd;
ce
let get_locality id = function
| Discharge ->
(** If a Let is defined outside a section, then we consider it as a local definition *)
let msg = pr_id id ++ strbrk " is declared as a local definition" in
let () = msg_warning msg in
true
| Local -> true
| Global -> false
let declare_global_definition ident ce local k imps =
let local = get_locality ident local in
let kn = declare_constant ident ~local (DefinitionEntry ce, IsDefinition k) in
let gr = ConstRef kn in
let () = maybe_declare_manual_implicits false gr imps in
let () = definition_message ident in
let () = Autoinstance.search_declaration (ConstRef kn) in
gr
let declare_definition_hook = ref ignore
let set_declare_definition_hook = (:=) declare_definition_hook
let get_declare_definition_hook () = !declare_definition_hook
let declare_definition ident (local,k) ce imps hook =
let () = !declare_definition_hook ce in
let r = match local with
| Discharge when Lib.sections_are_opened () ->
let c = SectionLocalDef ce in
let _ = declare_variable ident (Lib.cwd(), c, IsDefinition k) in
let () = definition_message ident in
let () = if Pfedit.refining () then
let msg = strbrk "Section definition " ++
pr_id ident ++ strbrk " is not visible from current goals" in
msg_warning msg
in
VarRef ident
| Discharge | Local | Global ->
declare_global_definition ident ce local k imps in
Option.default (fun _ r -> r) hook local r
let _ = Obligations.declare_definition_ref := declare_definition
let do_definition ident k bl red_option c ctypopt hook =
let (ce, evd, imps as def) = interp_definition bl red_option c ctypopt in
if Flags.is_program_mode () then
let env = Global.env () in
let c,sideff = Future.force ce.const_entry_body in
assert(sideff = Declareops.no_seff);
let typ = match ce.const_entry_type with
| Some t -> t
| None -> Retyping.get_type_of env evd c
in
Obligations.check_evars env evd;
let obls, _, c, cty =
Obligations.eterm_obligations env ident evd 0 c typ
in
ignore(Obligations.add_definition ident ~term:c cty ~implicits:imps ~kind:k ~hook obls)
else let ce = check_definition def in
ignore(declare_definition ident k ce imps
(Option.map (fun f l r -> f l r;r) hook))
(* 2| Variable/Hypothesis/Parameter/Axiom declarations *)
let declare_assumption is_coe (local, kind) c imps impl nl (_,ident) = match local with
| Discharge when Lib.sections_are_opened () ->
let decl = (Lib.cwd(), SectionLocalAssum (c,impl), IsAssumption kind) in
let _ = declare_variable ident decl in
let () = assumption_message ident in
let () =
if is_verbose () && Pfedit.refining () then
msg_warning (str"Variable" ++ spc () ++ pr_id ident ++
strbrk " is not visible from current goals")
in
let r = VarRef ident in
let () = Typeclasses.declare_instance None true r in
let () = if is_coe then Class.try_add_new_coercion r ~local:true in
(r,true)
| Global | Local | Discharge ->
let local = get_locality ident local in
let inl = match nl with
| NoInline -> None
| DefaultInline -> Some (Flags.get_inline_level())
| InlineAt i -> Some i
in
let decl = (ParameterEntry (None,c,inl), IsAssumption kind) in
let kn = declare_constant ident ~local decl in
let gr = ConstRef kn in
let () = maybe_declare_manual_implicits false gr imps in
let () = assumption_message ident in
let () = Autoinstance.search_declaration (ConstRef kn) in
let () = Typeclasses.declare_instance None false gr in
let () = if is_coe then Class.try_add_new_coercion gr local in
(gr,Lib.is_modtype_strict ())
let interp_assumption evdref env bl c =
let c = prod_constr_expr c bl in
interp_type_evars_impls evdref env c
let declare_assumptions idl is_coe k c imps impl_is_on nl =
let refs, status =
List.fold_left (fun (refs,status) id ->
let ref',status' = declare_assumption is_coe k c imps impl_is_on nl id in
ref'::refs, status' && status) ([],true) idl in
List.rev refs, status
let do_assumptions kind nl l =
let env = Global.env () in
let evdref = ref Evd.empty in
let _,l = List.fold_map (fun env (is_coe,(idl,c)) ->
let t,imps = interp_assumption evdref env [] c in
let env =
push_named_context (List.map (fun (_,id) -> (id,None,t)) idl) env in
(env,((is_coe,idl),t,imps))) env l in
let evd = solve_remaining_evars all_and_fail_flags env Evd.empty !evdref in
let l = List.map (on_pi2 (nf_evar evd)) l in
snd (List.fold_left (fun (subst,status) ((is_coe,idl),t,imps) ->
let t = replace_vars subst t in
let (refs,status') = declare_assumptions idl is_coe kind t imps false nl in
let subst' = List.map2 (fun (_,id) c -> (id,constr_of_global c)) idl refs in
(subst'@subst, status' && status)) ([],true) l)
(* 3a| Elimination schemes for mutual inductive definitions *)
(* 3b| Mutual inductive definitions *)
let push_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_rel (Name id,None,t) env)
env idl tl
type structured_one_inductive_expr = {
ind_name : Id.t;
ind_arity : constr_expr;
ind_lc : (Id.t * constr_expr) list
}
type structured_inductive_expr =
local_binder list * structured_one_inductive_expr list
let minductive_message = function
| [] -> error "No inductive definition."
| [x] -> (pr_id x ++ str " is defined")
| l -> hov 0 (prlist_with_sep pr_comma pr_id l ++
spc () ++ str "are defined")
let check_all_names_different indl =
let ind_names = List.map (fun ind -> ind.ind_name) indl in
let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in
let l = List.duplicates ind_names in
let () = match l with
| [] -> ()
| t :: _ -> raise (InductiveError (SameNamesTypes t))
in
let l = List.duplicates cstr_names in
let () = match l with
| [] -> ()
| c :: _ -> raise (InductiveError (SameNamesConstructors (List.hd l)))
in
let l = List.intersect ind_names cstr_names in
match l with
| [] -> ()
| _ -> raise (InductiveError (SameNamesOverlap l))
let mk_mltype_data evdref env assums arity indname =
let is_ml_type = is_sort env !evdref arity in
(is_ml_type,indname,assums)
let prepare_param = function
| (na,None,t) -> out_name na, LocalAssum t
| (na,Some b,_) -> out_name na, LocalDef b
let interp_ind_arity evdref env ind =
interp_type_evars_impls evdref env ind.ind_arity
let interp_cstrs evdref env impls mldata arity ind =
let cnames,ctyps = List.split ind.ind_lc in
(* Complete conclusions of constructor types if given in ML-style syntax *)
let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in
(* Interpret the constructor types *)
let ctyps'', cimpls = List.split (List.map (interp_type_evars_impls evdref env ~impls) ctyps') in
(cnames, ctyps'', cimpls)
let interp_mutual_inductive (paramsl,indl) notations finite =
check_all_names_different indl;
let env0 = Global.env() in
let evdref = ref Evd.empty in
let _, ((env_params, ctx_params), userimpls) =
interp_context_evars evdref env0 paramsl
in
let indnames = List.map (fun ind -> ind.ind_name) indl in
(* Names of parameters as arguments of the inductive type (defs removed) *)
let assums = List.filter(fun (_,b,_) -> Option.is_empty b) ctx_params in
let params = List.map (fun (na,_,_) -> out_name na) assums in
(* Interpret the arities *)
let arities = List.map (interp_ind_arity evdref env_params) indl in
let fullarities = List.map (fun (c, _) -> it_mkProd_or_LetIn c ctx_params) arities in
let env_ar = push_types env0 indnames fullarities in
let env_ar_params = push_rel_context ctx_params env_ar in
(* Compute interpretation metadatas *)
let indimpls = List.map (fun (_, impls) -> userimpls @ lift_implicits (rel_context_nhyps ctx_params) impls) arities in
let arities = List.map fst arities in
let impls = compute_internalization_env env0 (Inductive params) indnames fullarities indimpls in
let mldatas = List.map2 (mk_mltype_data evdref env_params params) arities indnames in
let constructors =
Metasyntax.with_syntax_protection (fun () ->
(* Temporary declaration of notations and scopes *)
List.iter (Metasyntax.set_notation_for_interpretation impls) notations;
(* Interpret the constructor types *)
List.map3 (interp_cstrs evdref env_ar_params impls) mldatas arities indl)
() in
(* Try further to solve evars, and instantiate them *)
let sigma = solve_remaining_evars all_and_fail_flags env_params Evd.empty !evdref in
let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map (nf_evar sigma) cl,impsl)) constructors in
let ctx_params = Context.map_rel_context (nf_evar sigma) ctx_params in
let arities = List.map (nf_evar sigma) arities in
(* Build the inductive entries *)
let entries = List.map3 (fun ind arity (cnames,ctypes,cimpls) -> {
mind_entry_typename = ind.ind_name;
mind_entry_arity = arity;
mind_entry_consnames = cnames;
mind_entry_lc = ctypes
}) indl arities constructors in
let impls =
let len = rel_context_nhyps ctx_params in
List.map2 (fun indimpls (_,_,cimpls) ->
indimpls, List.map (fun impls ->
userimpls @ (lift_implicits len impls)) cimpls) indimpls constructors
in
(* Build the mutual inductive entry *)
{ mind_entry_params = List.map prepare_param ctx_params;
mind_entry_record = false;
mind_entry_finite = finite;
mind_entry_inds = entries },
impls
(* Very syntactical equality *)
let eq_local_binders bl1 bl2 =
List.equal local_binder_eq bl1 bl2
let extract_coercions indl =
let mkqid (_,((_,id),_)) = qualid_of_ident id in
let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in
List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))
let extract_params indl =
let paramsl = List.map (fun (_,params,_,_) -> params) indl in
match paramsl with
| [] -> anomaly (Pp.str "empty list of inductive types")
| params::paramsl ->
if not (List.for_all (eq_local_binders params) paramsl) then error
"Parameters should be syntactically the same for each inductive type.";
params
let extract_inductive indl =
List.map (fun ((_,indname),_,ar,lc) -> {
ind_name = indname;
ind_arity = Option.cata (fun x -> x) (CSort (Loc.ghost,GType None)) ar;
ind_lc = List.map (fun (_,((_,id),t)) -> (id,t)) lc
}) indl
let extract_mutual_inductive_declaration_components indl =
let indl,ntnl = List.split indl in
let params = extract_params indl in
let coes = extract_coercions indl in
let indl = extract_inductive indl in
(params,indl), coes, List.flatten ntnl
let declare_mutual_inductive_with_eliminations isrecord mie impls =
let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
let (_,kn) = declare_mind isrecord mie in
let mind = Global.mind_of_delta_kn kn in
List.iteri (fun i (indimpls, constrimpls) ->
let ind = (mind,i) in
Autoinstance.search_declaration (IndRef ind);
maybe_declare_manual_implicits false (IndRef ind) indimpls;
List.iteri
(fun j impls ->
(* Autoinstance.search_declaration (ConstructRef (ind,j));*)
maybe_declare_manual_implicits false (ConstructRef (ind, succ j)) impls)
constrimpls)
impls;
if_verbose msg_info (minductive_message names);
declare_default_schemes mind;
mind
type one_inductive_impls =
Impargs.manual_explicitation list (* for inds *)*
Impargs.manual_explicitation list list (* for constrs *)
type one_inductive_expr =
lident * local_binder list * constr_expr option * constructor_expr list
let do_mutual_inductive indl finite =
let indl,coes,ntns = extract_mutual_inductive_declaration_components indl in
(* Interpret the types *)
let mie,impls = interp_mutual_inductive indl ntns finite in
(* Declare the mutual inductive block with its associated schemes *)
ignore (declare_mutual_inductive_with_eliminations UserVerbose mie impls);
(* Declare the possible notations of inductive types *)
List.iter Metasyntax.add_notation_interpretation ntns;
(* Declare the coercions *)
List.iter (fun qid -> Class.try_add_new_coercion (locate qid) false) coes
(* 3c| Fixpoints and co-fixpoints *)
(* An (unoptimized) function that maps preorders to partial orders...
Input: a list of associations (x,[y1;...;yn]), all yi distincts
and different of x, meaning x<=y1, ..., x<=yn
Output: a list of associations (x,Inr [y1;...;yn]), collecting all
distincts yi greater than x, _or_, (x, Inl y) meaning that
x is in the same class as y (in which case, x occurs
nowhere else in the association map)
partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list
*)
let rec partial_order = function
| [] -> []
| (x,xge)::rest ->
let rec browse res xge' = function
| [] ->
let res = List.map (function
| (z, Inr zge) when List.mem x zge -> (z, Inr (List.union zge xge'))
| r -> r) res in
(x,Inr xge')::res
| y::xge ->
let rec link y =
try match List.assoc y res with
| Inl z -> link z
| Inr yge ->
if List.mem x yge then
let res = List.remove_assoc y res in
let res = List.map (function
| (z, Inl t) ->
if Id.equal t y then (z, Inl x) else (z, Inl t)
| (z, Inr zge) ->
if List.mem y zge then
(z, Inr (List.add_set x (List.remove y zge)))
else
(z, Inr zge)) res in
browse ((y,Inl x)::res) xge' (List.union xge (List.remove x yge))
else
browse res (List.add_set y (List.union xge' yge)) xge
with Not_found -> browse res (List.add_set y xge') xge
in link y
in browse (partial_order rest) [] xge
let non_full_mutual_message x xge y yge isfix rest =
let reason =
if List.mem x yge then
Id.to_string y^" depends on "^Id.to_string x^" but not conversely"
else if List.mem y xge then
Id.to_string x^" depends on "^Id.to_string y^" but not conversely"
else
Id.to_string y^" and "^Id.to_string x^" are not mutually dependent" in
let e = if List.is_empty rest then reason else "e.g.: "^reason in
let k = if isfix then "fixpoint" else "cofixpoint" in
let w =
if isfix
then strbrk "Well-foundedness check may fail unexpectedly." ++ fnl()
else mt () in
strbrk ("Not a fully mutually defined "^k) ++ fnl () ++
strbrk ("("^e^").") ++ fnl () ++ w
let check_mutuality env isfix fixl =
let names = List.map fst fixl in
let preorder =
List.map (fun (id,def) ->
(id, List.filter (fun id' -> not (Id.equal id id') && occur_var env id' def) names))
fixl in
let po = partial_order preorder in
match List.filter (function (_,Inr _) -> true | _ -> false) po with
| (x,Inr xge)::(y,Inr yge)::rest ->
msg_warning (non_full_mutual_message x xge y yge isfix rest)
| _ -> ()
type structured_fixpoint_expr = {
fix_name : Id.t;
fix_annot : Id.t Loc.located option;
fix_binders : local_binder list;
fix_body : constr_expr option;
fix_type : constr_expr
}
let interp_fix_context evdref env isfix fix =
let before, after = if isfix then split_at_annot fix.fix_binders fix.fix_annot else [], fix.fix_binders in
let impl_env, ((env', ctx), imps) = interp_context_evars evdref env before in
let impl_env', ((env'', ctx'), imps') = interp_context_evars ~impl_env evdref env' after in
let annot = Option.map (fun _ -> List.length (assums_of_rel_context ctx)) fix.fix_annot in
((env'', ctx' @ ctx), (impl_env',imps @ imps'), annot)
let interp_fix_ccl evdref impls (env,_) fix =
interp_type_evars_impls ~impls evdref env fix.fix_type
let interp_fix_body evdref env_rec impls (_,ctx) fix ccl =
Option.map (fun body ->
let env = push_rel_context ctx env_rec in
let body = interp_casted_constr_evars evdref env ~impls body ccl in
it_mkLambda_or_LetIn body ctx) fix.fix_body
let build_fix_type (_,ctx) ccl = it_mkProd_or_LetIn ccl ctx
let declare_fix kind f def t imps =
let ce = {
const_entry_body = Future.from_val def;
const_entry_secctx = None;
const_entry_type = Some t;
const_entry_opaque = false;
const_entry_inline_code = false
} in
declare_definition f kind ce imps None
let _ = Obligations.declare_fix_ref := declare_fix
let prepare_recursive_declaration fixnames fixtypes fixdefs =
let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
let names = List.map (fun id -> Name id) fixnames in
(Array.of_list names, Array.of_list fixtypes, Array.of_list defs)
(* Jump over let-bindings. *)
let compute_possible_guardness_evidences (ids,_,na) =
match na with
| Some i -> [i]
| None ->
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem to worth the effort (except for huge mutual
fixpoints ?) *)
List.interval 0 (List.length ids - 1)
type recursive_preentry =
Id.t list * constr option list * types list
(* Wellfounded definition *)
open Coqlib
let contrib_name = "Program"
let subtac_dir = [contrib_name]
let fixsub_module = subtac_dir @ ["Wf"]
let tactics_module = subtac_dir @ ["Tactics"]
let init_reference dir s () = Coqlib.gen_reference "Command" dir s
let init_constant dir s () = Coqlib.gen_constant "Command" dir s
let make_ref l s = init_reference l s
let fix_proto = init_constant tactics_module "fix_proto"
let fix_sub_ref = make_ref fixsub_module "Fix_sub"
let measure_on_R_ref = make_ref fixsub_module "MR"
let well_founded = init_constant ["Init"; "Wf"] "well_founded"
let mkSubset name typ prop =
mkApp ((delayed_force build_sigma).typ,
[| typ; mkLambda (name, typ, prop) |])
let sigT = Lazy.lazy_from_fun build_sigma_type
let make_qref s = Qualid (Loc.ghost, qualid_of_string s)
let lt_ref = make_qref "Init.Peano.lt"
let rec telescope = function
| [] -> assert false
| [(n, None, t)] -> t, [n, Some (mkRel 1), t], mkRel 1
| (n, None, t) :: tl ->
let ty, tys, (k, constr) =
List.fold_left
(fun (ty, tys, (k, constr)) (n, b, t) ->
let pred = mkLambda (n, t, ty) in
let sigty = mkApp ((Lazy.force sigT).typ, [|t; pred|]) in
let intro = mkApp ((Lazy.force sigT).intro, [|lift k t; lift k pred; mkRel k; constr|]) in
(sigty, pred :: tys, (succ k, intro)))
(t, [], (2, mkRel 1)) tl
in
let (last, subst) = List.fold_right2
(fun pred (n, b, t) (prev, subst) ->
let proj1 = applistc (Lazy.force sigT).proj1 [t; pred; prev] in
let proj2 = applistc (Lazy.force sigT).proj2 [t; pred; prev] in
(lift 1 proj2, (n, Some proj1, t) :: subst))
(List.rev tys) tl (mkRel 1, [])
in ty, ((n, Some last, t) :: subst), constr
| (n, Some b, t) :: tl -> let ty, subst, term = telescope tl in
ty, ((n, Some b, t) :: subst), lift 1 term
let nf_evar_context sigma ctx =
List.map (fun (n, b, t) ->
(n, Option.map (Evarutil.nf_evar sigma) b, Evarutil.nf_evar sigma t)) ctx
let build_wellfounded (recname,n,bl,arityc,body) r measure notation =
Coqlib.check_required_library ["Coq";"Program";"Wf"];
let sigma = Evd.empty in
let evdref = ref (Evd.create_evar_defs sigma) in
let env = Global.env() in
let _, ((env', binders_rel), impls) = interp_context_evars evdref env bl in
let len = List.length binders_rel in
let top_env = push_rel_context binders_rel env in
let top_arity = interp_type_evars evdref top_env arityc in
let full_arity = it_mkProd_or_LetIn top_arity binders_rel in
let argtyp, letbinders, make = telescope binders_rel in
let argname = Id.of_string "recarg" in
let arg = (Name argname, None, argtyp) in
let binders = letbinders @ [arg] in
let binders_env = push_rel_context binders_rel env in
let rel, _ = interp_constr_evars_impls evdref env r in
let () = check_evars_are_solved env Evd.empty !evdref in
let relty = Typing.type_of env !evdref rel in
let relargty =
let error () =
user_err_loc (constr_loc r,
"Command.build_wellfounded",
Printer.pr_constr_env env rel ++ str " is not an homogeneous binary relation.")
in
try
let ctx, ar = Reductionops.splay_prod_n env !evdref 2 relty in
match ctx, kind_of_term ar with
| [(_, None, t); (_, None, u)], Sort (Prop Null)
when Reductionops.is_conv env !evdref t u -> t
| _, _ -> error ()
with e when Errors.noncritical e -> error ()
in
let measure = interp_casted_constr_evars evdref binders_env measure relargty in
let wf_rel, wf_rel_fun, measure_fn =
let measure_body, measure =
it_mkLambda_or_LetIn measure letbinders,
it_mkLambda_or_LetIn measure binders
in
let comb = constr_of_global (delayed_force measure_on_R_ref) in
let wf_rel = mkApp (comb, [| argtyp; relargty; rel; measure |]) in
let wf_rel_fun x y =
mkApp (rel, [| subst1 x measure_body;
subst1 y measure_body |])
in wf_rel, wf_rel_fun, measure
in
let wf_proof = mkApp (delayed_force well_founded, [| argtyp ; wf_rel |]) in
let argid' = Id.of_string (Id.to_string argname ^ "'") in
let wfarg len = (Name argid', None,
mkSubset (Name argid') argtyp
(wf_rel_fun (mkRel 1) (mkRel (len + 1))))
in
let intern_bl = wfarg 1 :: [arg] in
let _intern_env = push_rel_context intern_bl env in
let proj = (delayed_force build_sigma).Coqlib.proj1 in
let wfargpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel 3)) in
let projection = (* in wfarg :: arg :: before *)
mkApp (proj, [| argtyp ; wfargpred ; mkRel 1 |])
in
let top_arity_let = it_mkLambda_or_LetIn top_arity letbinders in
let intern_arity = substl [projection] top_arity_let in
(* substitute the projection of wfarg for something,
now intern_arity is in wfarg :: arg *)
let intern_fun_arity_prod = it_mkProd_or_LetIn intern_arity [wfarg 1] in
let intern_fun_binder = (Name (add_suffix recname "'"), None, intern_fun_arity_prod) in
let curry_fun =
let wfpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel (2 * len + 4))) in
let arg = mkApp ((delayed_force build_sigma).intro, [| argtyp; wfpred; lift 1 make; mkRel 1 |]) in
let app = mkApp (mkRel (2 * len + 2 (* recproof + orig binders + current binders *)), [| arg |]) in
let rcurry = mkApp (rel, [| measure; lift len measure |]) in
let lam = (Name (Id.of_string "recproof"), None, rcurry) in
let body = it_mkLambda_or_LetIn app (lam :: binders_rel) in
let ty = it_mkProd_or_LetIn (lift 1 top_arity) (lam :: binders_rel) in
(Name recname, Some body, ty)
in
let fun_bl = intern_fun_binder :: [arg] in
let lift_lets = Termops.lift_rel_context 1 letbinders in
let intern_body =
let ctx = (Name recname, None, pi3 curry_fun) :: binders_rel in
let (r, l, impls, scopes) =
Constrintern.compute_internalization_data env
Constrintern.Recursive full_arity impls
in
let newimpls = Id.Map.singleton recname
(r, l, impls @ [(Some (Id.of_string "recproof", Impargs.Manual, (true, false)))],
scopes @ [None]) in
interp_casted_constr_evars evdref ~impls:newimpls
(push_rel_context ctx env) body (lift 1 top_arity)
in
let intern_body_lam = it_mkLambda_or_LetIn intern_body (curry_fun :: lift_lets @ fun_bl) in
let prop = mkLambda (Name argname, argtyp, top_arity_let) in
let def =
mkApp (constr_of_global (delayed_force fix_sub_ref),
[| argtyp ; wf_rel ;
Evarutil.e_new_evar evdref env
~src:(Loc.ghost, Evar_kinds.QuestionMark (Evar_kinds.Define false)) wf_proof;
prop ; intern_body_lam |])
in
let _ = evdref := Evarutil.nf_evar_map !evdref in
let binders_rel = nf_evar_context !evdref binders_rel in
let binders = nf_evar_context !evdref binders in
let top_arity = Evarutil.nf_evar !evdref top_arity in
let hook, recname, typ =
if List.length binders_rel > 1 then
let name = add_suffix recname "_func" in
let hook l gr =
let body = it_mkLambda_or_LetIn (mkApp (constr_of_global gr, [|make|])) binders_rel in
let ty = it_mkProd_or_LetIn top_arity binders_rel in
let ce =
{ const_entry_body = Future.from_val (Evarutil.nf_evar !evdref body,Declareops.no_seff);
const_entry_secctx = None;
const_entry_type = Some ty;
const_entry_opaque = false;
const_entry_inline_code = false}
in
(** FIXME: include locality *)
let c = Declare.declare_constant recname (DefinitionEntry ce, IsDefinition Definition) in
let gr = ConstRef c in
if Impargs.is_implicit_args () || not (List.is_empty impls) then
Impargs.declare_manual_implicits false gr [impls]
in
let typ = it_mkProd_or_LetIn top_arity binders in
hook, name, typ
else
let typ = it_mkProd_or_LetIn top_arity binders_rel in
let hook l gr =
if Impargs.is_implicit_args () || not (List.is_empty impls) then
Impargs.declare_manual_implicits false gr [impls]
in hook, recname, typ
in
let fullcoqc = Evarutil.nf_evar !evdref def in
let fullctyp = Evarutil.nf_evar !evdref typ in
Obligations.check_evars env !evdref;
let evars, _, evars_def, evars_typ =
Obligations.eterm_obligations env recname !evdref 0 fullcoqc fullctyp
in
ignore(Obligations.add_definition
recname ~term:evars_def evars_typ evars ~hook:(Some hook))
let interp_recursive isfix fixl notations =
let env = Global.env() in
let fixnames = List.map (fun fix -> fix.fix_name) fixl in
(* Interp arities allowing for unresolved types *)
let evdref = ref Evd.empty in
let fixctxs, fiximppairs, fixannots =
List.split3 (List.map (interp_fix_context evdref env isfix) fixl) in
let fixctximpenvs, fixctximps = List.split fiximppairs in
let fixccls,fixcclimps = List.split (List.map3 (interp_fix_ccl evdref) fixctximpenvs fixctxs fixl) in
let fixtypes = List.map2 build_fix_type fixctxs fixccls in
let fixtypes = List.map (nf_evar !evdref) fixtypes in
let fiximps = List.map3
(fun ctximps cclimps (_,ctx) -> ctximps@(Impargs.lift_implicits (List.length ctx) cclimps))
fixctximps fixcclimps fixctxs in
let rec_sign =
List.fold_left2
(fun env' id t ->
if Flags.is_program_mode () then
let sort = Retyping.get_type_of env !evdref t in
let fixprot =
try mkApp (delayed_force fix_proto, [|sort; t|])
with e when Errors.noncritical e -> t
in
(id,None,fixprot) :: env'
else (id,None,t) :: env')
[] fixnames fixtypes
in
let env_rec = push_named_context rec_sign env in
(* Get interpretation metadatas *)
let impls = compute_internalization_env env Recursive fixnames fixtypes fiximps in
(* Interp bodies with rollback because temp use of notations/implicit *)
let fixdefs =
Metasyntax.with_syntax_protection (fun () ->
List.iter (Metasyntax.set_notation_for_interpretation impls) notations;
List.map4
(fun fixctximpenv -> interp_fix_body evdref env_rec (Id.Map.fold Id.Map.add fixctximpenv impls))
fixctximpenvs fixctxs fixl fixccls)
() in
(* Instantiate evars and check all are resolved *)
let evd = consider_remaining_unif_problems env_rec !evdref in
let fixdefs = List.map (Option.map (nf_evar evd)) fixdefs in
let fixtypes = List.map (nf_evar evd) fixtypes in
let fixctxnames = List.map (fun (_,ctx) -> List.map pi1 ctx) fixctxs in
(* Build the fix declaration block *)
(env,rec_sign,evd), (fixnames,fixdefs,fixtypes), List.combine3 fixctxnames fiximps fixannots
let check_recursive isfix env evd (fixnames,fixdefs,_) =
check_evars_are_solved env Evd.empty evd;
if not (List.mem None fixdefs) then begin
let fixdefs = List.map Option.get fixdefs in
check_mutuality env isfix (List.combine fixnames fixdefs)
end
let interp_fixpoint l ntns =
let (env,_,evd),fix,info = interp_recursive true l ntns in
check_recursive true env evd fix;
fix,info
let interp_cofixpoint l ntns =
let (env,_,evd),fix,info = interp_recursive false l ntns in
check_recursive false env evd fix;
fix,info
let declare_fixpoint local ((fixnames,fixdefs,fixtypes),fiximps) indexes ntns =
if List.mem None fixdefs then
(* Some bodies to define by proof *)
let thms =
List.map3 (fun id t (len,imps,_) -> (id,(t,(len,imps)))) fixnames fixtypes fiximps in
let init_tac =
Some (List.map (Option.cata Tacmach.refine_no_check Tacticals.tclIDTAC)
fixdefs) in
Lemmas.start_proof_with_initialization (Global,DefinitionBody Fixpoint)
(Some(false,indexes,init_tac)) thms None None
else begin
(* We shortcut the proof process *)
let fixdefs = List.map Option.get fixdefs in
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let env = Global.env() in
let indexes = search_guard Loc.ghost env indexes fixdecls in
let fiximps = List.map (fun (n,r,p) -> r) fiximps in
let fixdecls =
List.map_i (fun i _ -> mkFix ((indexes,i),fixdecls)) 0 fixnames in
let fixdecls = List.map (fun c -> c, Declareops.no_seff) fixdecls in
ignore (List.map4 (declare_fix (local, Fixpoint)) fixnames fixdecls fixtypes fiximps);
(* Declare the recursive definitions *)
fixpoint_message (Some indexes) fixnames;
end;
(* Declare notations *)
List.iter Metasyntax.add_notation_interpretation ntns
let declare_cofixpoint local ((fixnames,fixdefs,fixtypes),fiximps) ntns =
if List.mem None fixdefs then
(* Some bodies to define by proof *)
let thms =
List.map3 (fun id t (len,imps,_) -> (id,(t,(len,imps)))) fixnames fixtypes fiximps in
let init_tac =
Some (List.map (Option.cata Tacmach.refine_no_check Tacticals.tclIDTAC)
fixdefs) in
Lemmas.start_proof_with_initialization (Global,DefinitionBody CoFixpoint)
(Some(true,[],init_tac)) thms None None
else begin
(* We shortcut the proof process *)
let fixdefs = List.map Option.get fixdefs in
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let fixdecls = List.map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 fixnames in
let fixdecls = List.map (fun c-> c,Declareops.no_seff) fixdecls in
let fiximps = List.map (fun (len,imps,idx) -> imps) fiximps in
ignore (List.map4 (declare_fix (local, CoFixpoint)) fixnames fixdecls fixtypes fiximps);
(* Declare the recursive definitions *)
cofixpoint_message fixnames
end;
(* Declare notations *)
List.iter Metasyntax.add_notation_interpretation ntns
let extract_decreasing_argument limit = function
| (na,CStructRec) -> na
| (na,_) when not limit -> na
| _ -> error
"Only structural decreasing is supported for a non-Program Fixpoint"
let extract_fixpoint_components limit l =
let fixl, ntnl = List.split l in
let fixl = List.map (fun ((_,id),ann,bl,typ,def) ->
let ann = extract_decreasing_argument limit ann in
{fix_name = id; fix_annot = ann; fix_binders = bl; fix_body = def; fix_type = typ}) fixl in
fixl, List.flatten ntnl
let extract_cofixpoint_components l =
let fixl, ntnl = List.split l in
List.map (fun ((_,id),bl,typ,def) ->
{fix_name = id; fix_annot = None; fix_binders = bl; fix_body = def; fix_type = typ}) fixl,
List.flatten ntnl
let out_def = function
| Some def -> def
| None -> error "Program Fixpoint needs defined bodies."
let collect_evars_of_term evd c ty =
let evars = Int.Set.union (evars_of_term c) (evars_of_term ty) in
Int.Set.fold (fun ev acc -> Evd.add acc ev (Evd.find_undefined evd ev))
evars Evd.empty
let do_program_recursive local fixkind fixl ntns =
let isfix = fixkind != Obligations.IsCoFixpoint in
let (env, rec_sign, evd), fix, info =
interp_recursive isfix fixl ntns
in
(* Program-specific code *)
(* Get the interesting evars, those that were not instanciated *)
let evd = Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~fail:true env evd in
(* Solve remaining evars *)
let evd = nf_evar_map_undefined evd in
let collect_evars id def typ imps =
(* Generalize by the recursive prototypes *)
let def =
nf_evar evd (Termops.it_mkNamedLambda_or_LetIn def rec_sign)
and typ =
nf_evar evd (Termops.it_mkNamedProd_or_LetIn typ rec_sign)
in
let evm = collect_evars_of_term evd def typ in
let evars, _, def, typ =
Obligations.eterm_obligations env id evm
(List.length rec_sign) def typ
in (id, def, typ, imps, evars)
in
let (fixnames,fixdefs,fixtypes) = fix in
let fiximps = List.map pi2 info in
let fixdefs = List.map Option.get fixdefs in
let defs = List.map4 collect_evars fixnames fixdefs fixtypes fiximps in
let () = if isfix then begin
let possible_indexes = List.map compute_possible_guardness_evidences info in
let fixdecls = Array.of_list (List.map (fun x -> Name x) fixnames),
Array.of_list fixtypes,
Array.of_list (List.map (subst_vars (List.rev fixnames)) fixdefs)
in
let indexes =
Pretyping.search_guard Loc.ghost (Global.env ()) possible_indexes fixdecls in
List.iteri (fun i _ -> Inductive.check_fix env ((indexes,i),fixdecls)) fixl
end in
let kind = match fixkind with
| Obligations.IsFixpoint _ -> (local, Fixpoint)
| Obligations.IsCoFixpoint -> (local, CoFixpoint)
in
Obligations.add_mutual_definitions defs ~kind ntns fixkind
let do_program_fixpoint local l =
let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in
match g, l with
| [(n, CWfRec r)], [(((_,id),_,bl,typ,def),ntn)] ->
let recarg =
match n with
| Some n -> mkIdentC (snd n)
| None ->
errorlabstrm "do_program_fixpoint"
(str "Recursive argument required for well-founded fixpoints")
in build_wellfounded (id, n, bl, typ, out_def def) r recarg ntn
| [(n, CMeasureRec (m, r))], [(((_,id),_,bl,typ,def),ntn)] ->
build_wellfounded (id, n, bl, typ, out_def def)
(Option.default (CRef lt_ref) r) m ntn
| _, _ when List.for_all (fun (n, ro) -> ro == CStructRec) g ->
let fixl,ntns = extract_fixpoint_components true l in
let fixkind = Obligations.IsFixpoint g in
do_program_recursive local fixkind fixl ntns
| _, _ ->
errorlabstrm "do_program_fixpoint"
(str "Well-founded fixpoints not allowed in mutually recursive blocks")
let do_fixpoint local l =
if Flags.is_program_mode () then do_program_fixpoint local l
else
let fixl, ntns = extract_fixpoint_components true l in
let fix = interp_fixpoint fixl ntns in
let possible_indexes =
List.map compute_possible_guardness_evidences (snd fix) in
declare_fixpoint local fix possible_indexes ntns
let do_cofixpoint local l =
let fixl,ntns = extract_cofixpoint_components l in
if Flags.is_program_mode () then
do_program_recursive local Obligations.IsCoFixpoint fixl ntns
else
let cofix = interp_cofixpoint fixl ntns in
declare_cofixpoint local cofix ntns
|