1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Printf
open Coqdep_lexer
open Coqdep_common
(** The basic parts of coqdep (i.e. the parts used by [coqdep -boot])
are now in [Coqdep_common]. The code that remains here concerns
the other options. Calling this complete coqdep with the [-boot]
option should be equivalent to calling [coqdep_boot].
*)
let option_D = ref false
let option_w = ref false
let option_sort = ref false
let option_dump = ref None
let warning_mult suf iter =
let tab = Hashtbl.create 151 in
let check f d =
begin try
let d' = Hashtbl.find tab f in
if (Filename.dirname (file_name f d))
<> (Filename.dirname (file_name f d')) then begin
eprintf "*** Warning : the file %s is defined twice!\n" (f ^ suf);
flush stderr
end
with Not_found -> () end;
Hashtbl.add tab f d
in
iter check
let add_coqlib_known phys_dir log_dir f =
match get_extension f [".vo"] with
| (basename,".vo") ->
let name = log_dir@[basename] in
let paths = suffixes name in
List.iter (fun f -> Hashtbl.add coqlibKnown f ()) paths
| _ -> ()
let sort () =
let seen = Hashtbl.create 97 in
let rec loop file =
let file = canonize file in
if not (Hashtbl.mem seen file) then begin
Hashtbl.add seen file ();
let cin = open_in (file ^ ".v") in
let lb = Lexing.from_channel cin in
try
while true do
match coq_action lb with
| Require sl ->
List.iter
(fun s ->
try loop (Hashtbl.find vKnown s)
with Not_found -> ())
sl
| RequireString s -> loop s
| _ -> ()
done
with Fin_fichier ->
close_in cin;
printf "%s%s " file !suffixe
end
in
List.iter (fun (name,_) -> loop name) !vAccu
let (dep_tab : (string,string list) Hashtbl.t) = Hashtbl.create 151
let mL_dep_list b f =
try
Hashtbl.find dep_tab f
with Not_found ->
let deja_vu = ref ([] : string list) in
try
let chan = open_in f in
let buf = Lexing.from_channel chan in
try
while true do
let (Use_module str) = caml_action buf in
if str = b then begin
eprintf "*** Warning : in file %s the" f;
eprintf " notation %s. is useless !\n" b;
flush stderr
end else
if not (List.mem str !deja_vu) then addQueue deja_vu str
done; []
with Fin_fichier -> begin
close_in chan;
let rl = List.rev !deja_vu in
Hashtbl.add dep_tab f rl;
rl
end
with Sys_error _ -> []
let affiche_Declare f dcl =
printf "\n*** In file %s: \n" f;
printf "Declare ML Module";
List.iter (fun str -> printf " \"%s\"" str) dcl;
printf ".\n";
flush stdout
let warning_Declare f dcl =
eprintf "*** Warning : in file %s, the ML modules" f;
eprintf " declaration should be\n";
eprintf "*** Declare ML Module";
List.iter (fun str -> eprintf " \"%s\"" str) dcl;
eprintf ".\n";
flush stderr
let traite_Declare f =
let decl_list = ref ([] : string list) in
let rec treat = function
| s :: ll ->
let s' = basename_noext s in
(match search_ml_known s with
| Some mldir when not (List.mem s' !decl_list) ->
let fullname = file_name s' mldir in
let depl = mL_dep_list s (fullname ^ ".ml") in
treat depl;
decl_list := s :: !decl_list
| _ -> ());
treat ll
| [] -> ()
in
try
let chan = open_in f in
let buf = Lexing.from_channel chan in
begin try
while true do
let tok = coq_action buf in
(match tok with
| Declare sl ->
decl_list := [];
treat sl;
decl_list := List.rev !decl_list;
if !option_D then
affiche_Declare f !decl_list
else if !decl_list <> sl then
warning_Declare f !decl_list
| _ -> ())
done
with Fin_fichier -> () end;
close_in chan
with Sys_error _ -> ()
let declare_dependencies () =
List.iter
(fun (name,_) ->
traite_Declare (name^".v");
flush stdout)
(List.rev !vAccu)
(** DAGs guaranteed to be transitive reductions *)
module DAG (Node : Set.OrderedType) :
sig
type node = Node.t
type t
val empty : t
val add_transitive_edge : node -> node -> t -> t
val iter : (node -> node -> unit) -> t -> unit
end =
struct
type node = Node.t
module NSet = Set.Make(Node)
module NMap = Map.Make(Node)
(** Associate to a node the set of its neighbours *)
type _t = NSet.t NMap.t
(** Optimisation: construct the reverse graph at the same time *)
type t = { dir : _t; rev : _t; }
let node_equal x y = Node.compare x y = 0
let add_edge x y graph =
let set = try NMap.find x graph with Not_found -> NSet.empty in
NMap.add x (NSet.add y set) graph
let remove_edge x y graph =
let set = try NMap.find x graph with Not_found -> NSet.empty in
let set = NSet.remove y set in
if NSet.is_empty set then NMap.remove x graph
else NMap.add x set graph
let has_edge x y graph =
let set = try NMap.find x graph with Not_found -> NSet.empty in
NSet.mem y set
let connected x y graph =
let rec aux rem seen =
if NSet.is_empty rem then false
else
let x = NSet.choose rem in
if node_equal x y then true
else
let rem = NSet.remove x rem in
if NSet.mem x seen then
aux rem seen
else
let seen = NSet.add x seen in
let next = try NMap.find x graph with Not_found -> NSet.empty in
let rem = NSet.union next rem in
aux rem seen
in
aux (NSet.singleton x) NSet.empty
(** Check whether there is a path from a to b going through the edge
x -> y. *)
let connected_through a b x y graph =
let rec aux rem seen =
if NMap.is_empty rem then false
else
let (n, through) = NMap.choose rem in
if node_equal n b && through then true
else
let rem = NMap.remove n rem in
let is_seen = try Some (NMap.find n seen) with Not_found -> None in
match is_seen with
| None ->
let seen = NMap.add n through seen in
let next = try NMap.find n graph with Not_found -> NSet.empty in
let is_x = node_equal n x in
let push m accu =
let through = through || (is_x && node_equal m y) in
NMap.add m through accu
in
let rem = NSet.fold push next rem in
aux rem seen
| Some false ->
(** The path we took encountered x -> y but not the one in seen *)
if through then aux (NMap.add n true rem) (NMap.add n true seen)
else aux rem seen
| Some true -> aux rem seen
in
aux (NMap.singleton a false) NMap.empty
let closure x graph =
let rec aux rem seen =
if NSet.is_empty rem then seen
else
let x = NSet.choose rem in
let rem = NSet.remove x rem in
if NSet.mem x seen then
aux rem seen
else
let seen = NSet.add x seen in
let next = try NMap.find x graph with Not_found -> NSet.empty in
let rem = NSet.union next rem in
aux rem seen
in
aux (NSet.singleton x) NSet.empty
let empty = { dir = NMap.empty; rev = NMap.empty; }
(** Online transitive reduction algorithm *)
let add_transitive_edge x y graph =
if connected x y graph.dir then graph
else
let dir = add_edge x y graph.dir in
let rev = add_edge y x graph.rev in
let graph = { dir; rev; } in
let ancestors = closure x rev in
let descendents = closure y dir in
let fold_ancestor a graph =
let fold_descendent b graph =
let to_remove = has_edge a b graph.dir in
let to_remove = to_remove && not (node_equal x a && node_equal y b) in
let to_remove = to_remove && connected_through a b x y graph.dir in
if to_remove then
let dir = remove_edge a b graph.dir in
let rev = remove_edge b a graph.rev in
{ dir; rev; }
else graph
in
NSet.fold fold_descendent descendents graph
in
NSet.fold fold_ancestor ancestors graph
let iter f graph =
let iter x set = NSet.iter (fun y -> f x y) set in
NMap.iter iter graph.dir
end
module Graph =
struct
(** Dumping a dependency graph **)
module DAG = DAG(struct type t = string let compare = compare end)
(** TODO: we should share this code with Coqdep_common *)
let treat_coq_file chan =
let buf = Lexing.from_channel chan in
let deja_vu_v = ref ([]: string list list)
and deja_vu_ml = ref ([] : string list) in
let mark_v_done acc str =
let seen = List.mem str !deja_vu_v in
if not seen then
let () = addQueue deja_vu_v str in
try
let file_str = Hashtbl.find vKnown str in
(canonize file_str, !suffixe) :: acc
with Not_found -> acc
else acc
in
let rec loop acc =
let token = try Some (coq_action buf) with Fin_fichier -> None in
match token with
| None -> acc
| Some action ->
let acc = match action with
| Require strl ->
List.fold_left mark_v_done acc strl
| RequireString s ->
let str = Filename.basename s in
mark_v_done acc [str]
| Declare sl ->
let declare suff dir s =
let base = file_name s dir in
let opt = if !option_natdynlk then " " ^ base ^ ".cmxs" else "" in
(escape base, suff ^ opt)
in
let decl acc str =
let s = basename_noext str in
if not (List.mem s !deja_vu_ml) then
let () = addQueue deja_vu_ml s in
match search_mllib_known s with
| Some mldir -> (declare ".cma" mldir s) :: acc
| None ->
match search_ml_known s with
| Some mldir -> (declare ".cmo" mldir s) :: acc
| None -> acc
else acc
in
List.fold_left decl acc sl
| Load str ->
let str = Filename.basename str in
let seen = List.mem [str] !deja_vu_v in
if not seen then
let () = addQueue deja_vu_v [str] in
try
let file_str = Hashtbl.find vKnown [str] in
(canonize file_str, ".v") :: acc
with Not_found -> acc
else acc
| AddLoadPath _ | AddRecLoadPath _ -> acc (** TODO *)
in
loop acc
in
loop []
let treat_coq_file f =
let chan = try Some (open_in f) with Sys_error _ -> None in
match chan with
| None -> []
| Some chan ->
try
let ans = treat_coq_file chan in
let () = close_in chan in
ans
with Syntax_error (i, j) -> close_in chan; error_cannot_parse f (i, j)
type graph =
| Element of string
| Subgraph of string * graph list
let rec insert_graph name path graphs = match path, graphs with
| [] , graphs -> (Element name) :: graphs
| (box :: boxes), (Subgraph (hd, names)) :: tl when hd = box ->
Subgraph (hd, insert_graph name boxes names) :: tl
| _, hd :: tl -> hd :: (insert_graph name path tl)
| (box :: boxes), [] -> [ Subgraph (box, insert_graph name boxes []) ]
let print_graphs chan graph =
let rec print_aux name = function
| [] -> name
| (Element str) :: tl -> fprintf chan "%s\n" str; print_aux name tl
| Subgraph (box, names) :: tl ->
fprintf chan "subgraph cluster%n {\n label=\"%s\"" name box;
let name = print_aux (name + 1) names in
fprintf chan "}\n"; print_aux name tl
in
ignore (print_aux 0 graph)
let rec pop_common_prefix = function
| [Subgraph (_, graphs)] -> pop_common_prefix graphs
| graphs -> graphs
let split_path = Str.split (Str.regexp "/")
let rec pop_last = function
| [] -> []
| [ x ] -> []
| x :: xs -> x :: pop_last xs
let get_boxes path = pop_last (split_path path)
let insert_raw_graph file =
insert_graph (basename_noext file) (get_boxes file)
let rec get_dependencies name args =
let vdep = treat_coq_file (name ^ ".v") in
let fold (deps, graphs, alseen) (dep, _) =
let dag = DAG.add_transitive_edge name dep deps in
if not (List.mem dep alseen) then
get_dependencies dep (dag, insert_raw_graph dep graphs, dep :: alseen)
else
(dag, graphs, alseen)
in
List.fold_left fold args vdep
let coq_dependencies_dump chan dumpboxes =
let (deps, graphs, _) =
List.fold_left (fun ih (name, _) -> get_dependencies name ih)
(DAG.empty, List.fold_left (fun ih (file, _) -> insert_raw_graph file ih) [] !vAccu,
List.map fst !vAccu) !vAccu
in
fprintf chan "digraph dependencies {\n"; flush chan;
if dumpboxes then print_graphs chan (pop_common_prefix graphs)
else List.iter (fun (name, _) -> fprintf chan "\"%s\"[label=\"%s\"]\n" name (basename_noext name)) !vAccu;
DAG.iter (fun name dep -> fprintf chan "\"%s\" -> \"%s\"\n" dep name) deps;
fprintf chan "}\n"
end
let usage () =
eprintf " usage: coqdep [-w] [-c] [-D] [-I dir] [-R dir coqdir] <filename>+\n";
eprintf " extra options:\n";
eprintf " -coqlib dir : set the coq standard library directory\n";
eprintf " -exclude-dir f : skip subdirectories named 'f' during -R search\n";
eprintf " -dumpgraph f : print a dot dependency graph in file 'f'\n";
exit 1
let rec parse = function
| "-c" :: ll -> option_c := true; parse ll
| "-D" :: ll -> option_D := true; parse ll
| "-w" :: ll -> option_w := true; parse ll
| "-boot" :: ll -> Flags.boot := true; parse ll
| "-sort" :: ll -> option_sort := true; parse ll
| ("-noglob" | "-no-glob") :: ll -> option_noglob := true; parse ll
| "-I" :: r :: "-as" :: ln :: ll -> add_dir add_known r [ln]; parse ll
| "-I" :: r :: "-as" :: [] -> usage ()
| "-I" :: r :: ll -> add_dir add_known r []; parse ll
| "-I" :: [] -> usage ()
| "-R" :: r :: "-as" :: ln :: ll -> add_rec_dir add_known r [ln]; parse ll
| "-R" :: r :: "-as" :: [] -> usage ()
| "-R" :: r :: ln :: ll -> add_rec_dir add_known r [ln]; parse ll
| "-R" :: ([] | [_]) -> usage ()
| "-dumpgraph" :: f :: ll -> option_dump := Some (false, f); parse ll
| "-dumpgraphbox" :: f :: ll -> option_dump := Some (true, f); parse ll
| "-exclude-dir" :: r :: ll -> norec_dirnames := r::!norec_dirnames; parse ll
| "-exclude-dir" :: [] -> usage ()
| "-coqlib" :: r :: ll -> Flags.coqlib_spec := true; Flags.coqlib := r; parse ll
| "-coqlib" :: [] -> usage ()
| "-suffix" :: s :: ll -> suffixe := s ; parse ll
| "-suffix" :: [] -> usage ()
| "-slash" :: ll ->
Printf.eprintf "warning: option -slash has no effect and is deprecated.\n";
parse ll
| ("-h"|"--help"|"-help") :: _ -> usage ()
| f :: ll -> treat_file None f; parse ll
| [] -> ()
let coqdep () =
if Array.length Sys.argv < 2 then usage ();
parse (List.tl (Array.to_list Sys.argv));
if not Coq_config.has_natdynlink then option_natdynlk := false;
(* NOTE: These directories are searched from last to first *)
if !Flags.boot then begin
add_rec_dir add_known "theories" ["Coq"];
add_rec_dir add_known "plugins" ["Coq"]
end else begin
Envars.set_coqlib ~fail:Errors.error;
let coqlib = Envars.coqlib () in
add_rec_dir add_coqlib_known (coqlib//"theories") ["Coq"];
add_rec_dir add_coqlib_known (coqlib//"plugins") ["Coq"];
let user = coqlib//"user-contrib" in
if Sys.file_exists user then add_rec_dir add_coqlib_known user [];
List.iter (fun s -> add_rec_dir add_coqlib_known s [])
(Envars.xdg_dirs (fun x -> Pp.msg_warning (Pp.str x)));
List.iter (fun s -> add_rec_dir add_coqlib_known s []) Envars.coqpath;
end;
List.iter (fun (f,d) -> add_mli_known f d) !mliAccu;
List.iter (fun (f,d) -> add_mllib_known f d) !mllibAccu;
List.iter (fun (f,_,d) -> add_ml_known f d) !mlAccu;
warning_mult ".mli" iter_mli_known;
warning_mult ".ml" iter_ml_known;
if !option_sort then begin sort (); exit 0 end;
if !option_c && not !option_D then mL_dependencies ();
if not !option_D then coq_dependencies ();
if !option_w || !option_D then declare_dependencies ();
begin match !option_dump with
| None -> ()
| Some (box, file) ->
let chan = open_out file in
try Graph.coq_dependencies_dump chan box; close_out chan
with e -> close_out chan; raise e
end
let _ = Printexc.catch coqdep ()
|