1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(*i $Id$ i*)
Require Relations.
Require PolyList.
Require Multiset.
Set Implicit Arguments.
Section defs.
Variable A : Set.
Variable leA : (relation A).
Variable eqA : (relation A).
Local gtA := [x,y:A]~(leA x y).
Hypothesis leA_dec : (x,y:A){(leA x y)}+{~(leA x y)}.
Hypothesis eqA_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}.
Hypothesis leA_refl : (x,y:A) (eqA x y) -> (leA x y).
Hypothesis leA_trans : (x,y,z:A) (leA x y) -> (leA y z) -> (leA x z).
Hypothesis leA_antisym : (x,y:A)(leA x y) -> (leA y x) -> (eqA x y).
Hints Resolve leA_refl : default.
Hints Immediate eqA_dec leA_dec leA_antisym : default.
Local emptyBag := (EmptyBag A).
Local singletonBag := (SingletonBag eqA_dec).
(** contents of a list *)
Fixpoint list_contents [l:(list A)] : (multiset A) :=
Cases l of
nil => emptyBag
| (cons a l) => (munion (singletonBag a) (list_contents l))
end.
Lemma list_contents_app : (l,m:(list A))
(meq (list_contents (app l m)) (munion (list_contents l) (list_contents m))).
Proof.
Induction l; Simpl; Auto with datatypes.
Intros.
Apply meq_trans with
(munion (singletonBag a) (munion (list_contents l0) (list_contents m))); Auto with datatypes.
Qed.
Hints Resolve list_contents_app.
Definition permutation := [l,m:(list A)](meq (list_contents l) (list_contents m)).
Lemma permut_refl : (l:(list A))(permutation l l).
Proof.
Unfold permutation; Auto with datatypes.
Qed.
Hints Resolve permut_refl.
Lemma permut_tran : (l,m,n:(list A))
(permutation l m) -> (permutation m n) -> (permutation l n).
Proof.
Unfold permutation; Intros.
Apply meq_trans with (list_contents m); Auto with datatypes.
Qed.
Lemma permut_right : (l,m:(list A))
(permutation l m) -> (a:A)(permutation (cons a l) (cons a m)).
Proof.
Unfold permutation; Simpl; Auto with datatypes.
Qed.
Hints Resolve permut_right.
Lemma permut_app : (l,l',m,m':(list A))
(permutation l l') -> (permutation m m') ->
(permutation (app l m) (app l' m')).
Proof.
Unfold permutation; Intros.
Apply meq_trans with (munion (list_contents l) (list_contents m)); Auto with datatypes.
Apply meq_trans with (munion (list_contents l') (list_contents m')); Auto with datatypes.
Apply meq_trans with (munion (list_contents l') (list_contents m)); Auto with datatypes.
Qed.
Hints Resolve permut_app.
Lemma permut_cons : (l,m:(list A))(permutation l m) ->
(a:A)(permutation (cons a l) (cons a m)).
Proof.
Intros l m H a.
Change (permutation (app (cons a (nil A)) l) (app (cons a (nil A)) m)).
Apply permut_app; Auto with datatypes.
Qed.
Hints Resolve permut_cons.
Lemma permut_middle : (l,m:(list A))
(a:A)(permutation (cons a (app l m)) (app l (cons a m))).
Proof.
Unfold permutation.
Induction l; Simpl; Auto with datatypes.
Intros.
Apply meq_trans with (munion (singletonBag a)
(munion (singletonBag a0) (list_contents (app l0 m)))); Auto with datatypes.
Apply munion_perm_left; Auto with datatypes.
Qed.
Hints Resolve permut_middle.
End defs.
Unset Implicit Arguments.
|