1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(*i $Id$ i*)
(* G. Huet 1-9-95 *)
(** We consider a Set [U], given with a commutative-associative operator [op],
and a congruence [cong]; we show permutation lemmas *)
Section Axiomatisation.
Variable U: Set.
Variable op: U -> U -> U.
Variable cong : U -> U -> Prop.
Hypothesis op_comm : (x,y:U)(cong (op x y) (op y x)).
Hypothesis op_ass : (x,y,z:U)(cong (op (op x y) z) (op x (op y z))).
Hypothesis cong_left : (x,y,z:U)(cong x y)->(cong (op x z) (op y z)).
Hypothesis cong_right : (x,y,z:U)(cong x y)->(cong (op z x) (op z y)).
Hypothesis cong_trans : (x,y,z:U)(cong x y)->(cong y z)->(cong x z).
Hypothesis cong_sym : (x,y:U)(cong x y)->(cong y x).
(** Remark. we do not need: [Hypothesis cong_refl : (x:U)(cong x x)]. *)
Lemma cong_congr :
(x,y,z,t:U)(cong x y)->(cong z t)->(cong (op x z) (op y t)).
Proof.
Intros; Apply cong_trans with (op y z).
Apply cong_left; Trivial.
Apply cong_right; Trivial.
Qed.
Lemma comm_right : (x,y,z:U)(cong (op x (op y z)) (op x (op z y))).
Proof.
Intros; Apply cong_right; Apply op_comm.
Qed.
Lemma comm_left : (x,y,z:U)(cong (op (op x y) z) (op (op y x) z)).
Proof.
Intros; Apply cong_left; Apply op_comm.
Qed.
Lemma perm_right : (x,y,z:U)(cong (op (op x y) z) (op (op x z) y)).
Proof.
Intros.
Apply cong_trans with (op x (op y z)).
Apply op_ass.
Apply cong_trans with (op x (op z y)).
Apply cong_right; Apply op_comm.
Apply cong_sym; Apply op_ass.
Qed.
Lemma perm_left : (x,y,z:U)(cong (op x (op y z)) (op y (op x z))).
Proof.
Intros.
Apply cong_trans with (op (op x y) z).
Apply cong_sym; Apply op_ass.
Apply cong_trans with (op (op y x) z).
Apply cong_left; Apply op_comm.
Apply op_ass.
Qed.
Lemma op_rotate : (x,y,z,t:U)(cong (op x (op y z)) (op z (op x y))).
Proof.
Intros; Apply cong_trans with (op (op x y) z).
Apply cong_sym; Apply op_ass.
Apply op_comm.
Qed.
(* Needed for treesort ... *)
Lemma twist : (x,y,z,t:U)
(cong (op x (op (op y z) t)) (op (op y (op x t)) z)).
Proof.
Intros.
Apply cong_trans with (op x (op (op y t) z)).
Apply cong_right; Apply perm_right.
Apply cong_trans with (op (op x (op y t)) z).
Apply cong_sym; Apply op_ass.
Apply cong_left; Apply perm_left.
Qed.
End Axiomatisation.
|