1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Rbase.
Require Rfunctions.
V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
Open Local Scope R_scope.
Inductive Rlist : Type :=
| nil : Rlist
| cons : R -> Rlist -> Rlist.
Fixpoint In [x:R;l:Rlist] : Prop :=
Cases l of
| nil => False
| (cons a l') => ``x==a``\/(In x l') end.
Fixpoint Rlength [l:Rlist] : nat :=
Cases l of
| nil => O
| (cons a l') => (S (Rlength l')) end.
Fixpoint MaxRlist [l:Rlist] : R :=
Cases l of
| nil => R0
| (cons a l1) =>
Cases l1 of
| nil => a
| (cons a' l2) => (Rmax a (MaxRlist l1))
end
end.
Fixpoint MinRlist [l:Rlist] : R :=
Cases l of
| nil => R1
| (cons a l1) =>
Cases l1 of
| nil => a
| (cons a' l2) => (Rmin a (MinRlist l1))
end
end.
Lemma MaxRlist_P1 : (l:Rlist;x:R) (In x l)->``x<=(MaxRlist l)``.
Intros; Induction l.
Simpl in H; Elim H.
Induction l.
Simpl in H; Elim H; Intro.
Simpl; Right; Assumption.
Elim H0.
Replace (MaxRlist (cons r (cons r0 l))) with (Rmax r (MaxRlist (cons r0 l))).
Simpl in H; Decompose [or] H.
Rewrite H0; Apply RmaxLess1.
Unfold Rmax; Case (total_order_Rle r (MaxRlist (cons r0 l))); Intro.
Apply Hrecl; Simpl; Tauto.
Apply Rle_trans with (MaxRlist (cons r0 l)); [Apply Hrecl; Simpl; Tauto | Left; Auto with real].
Unfold Rmax; Case (total_order_Rle r (MaxRlist (cons r0 l))); Intro.
Apply Hrecl; Simpl; Tauto.
Apply Rle_trans with (MaxRlist (cons r0 l)); [Apply Hrecl; Simpl; Tauto | Left; Auto with real].
Reflexivity.
Qed.
Fixpoint AbsList [l:Rlist] : R->Rlist :=
[x:R] Cases l of
| nil => nil
| (cons a l') => (cons ``(Rabsolu (a-x))/2`` (AbsList l' x))
end.
Lemma MinRlist_P1 : (l:Rlist;x:R) (In x l)->``(MinRlist l)<=x``.
Intros; Induction l.
Simpl in H; Elim H.
Induction l.
Simpl in H; Elim H; Intro.
Simpl; Right; Symmetry; Assumption.
Elim H0.
Replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
Simpl in H; Decompose [or] H.
Rewrite H0; Apply Rmin_l.
Unfold Rmin; Case (total_order_Rle r (MinRlist (cons r0 l))); Intro.
Apply Rle_trans with (MinRlist (cons r0 l)).
Assumption.
Apply Hrecl; Simpl; Tauto.
Apply Hrecl; Simpl; Tauto.
Apply Rle_trans with (MinRlist (cons r0 l)).
Apply Rmin_r.
Apply Hrecl; Simpl; Tauto.
Reflexivity.
Qed.
Lemma AbsList_P1 : (l:Rlist;x,y:R) (In y l) -> (In ``(Rabsolu (y-x))/2`` (AbsList l x)).
Intros; Induction l.
Elim H.
Simpl; Simpl in H; Elim H; Intro.
Left; Rewrite H0; Reflexivity.
Right; Apply Hrecl; Assumption.
Qed.
Lemma MinRlist_P2 : (l:Rlist) ((y:R)(In y l)->``0<y``)->``0<(MinRlist l)``.
Intros; Induction l.
Apply Rlt_R0_R1.
Induction l.
Simpl; Apply H; Simpl; Tauto.
Replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
Unfold Rmin; Case (total_order_Rle r (MinRlist (cons r0 l))); Intro.
Apply H; Simpl; Tauto.
Apply Hrecl; Intros; Apply H; Simpl; Simpl in H0; Tauto.
Reflexivity.
Qed.
Lemma AbsList_P2 : (l:Rlist;x,y:R) (In y (AbsList l x)) -> (EXT z : R | (In z l)/\``y==(Rabsolu (z-x))/2``).
Intros; Induction l.
Elim H.
Elim H; Intro.
Exists r; Split.
Simpl; Tauto.
Assumption.
Assert H1 := (Hrecl H0); Elim H1; Intros; Elim H2; Clear H2; Intros; Exists x0; Simpl; Simpl in H2; Tauto.
Qed.
Lemma MaxRlist_P2 : (l:Rlist) (EXT y:R | (In y l)) -> (In (MaxRlist l) l).
Intros; Induction l.
Simpl in H; Elim H; Trivial.
Induction l.
Simpl; Left; Reflexivity.
Change (In (Rmax r (MaxRlist (cons r0 l))) (cons r (cons r0 l))); Unfold Rmax; Case (total_order_Rle r (MaxRlist (cons r0 l))); Intro.
Right; Apply Hrecl; Exists r0; Left; Reflexivity.
Left; Reflexivity.
Qed.
Fixpoint pos_Rl [l:Rlist] : nat->R :=
[i:nat] Cases l of
| nil => R0
| (cons a l') =>
Cases i of
| O => a
| (S i') => (pos_Rl l' i')
end
end.
Lemma pos_Rl_P1 : (l:Rlist;a:R) (lt O (Rlength l)) -> (pos_Rl (cons a l) (Rlength l))==(pos_Rl l (pred (Rlength l))).
Intros; Induction l; [Elim (lt_n_O ? H) | Simpl; Case (Rlength l); [Reflexivity | Intro; Reflexivity]].
Qed.
Lemma pos_Rl_P2 : (l:Rlist;x:R) (In x l)<->(EX i:nat | (lt i (Rlength l))/\x==(pos_Rl l i)).
Intros; Induction l.
Split; Intro; [Elim H | Elim H; Intros; Elim H0; Intros; Elim (lt_n_O ? H1)].
Split; Intro.
Elim H; Intro.
Exists O; Split; [Simpl; Apply lt_O_Sn | Simpl; Apply H0].
Elim Hrecl; Intros; Assert H3 := (H1 H0); Elim H3; Intros; Elim H4; Intros; Exists (S x0); Split; [Simpl; Apply lt_n_S; Assumption | Simpl; Assumption].
Elim H; Intros; Elim H0; Intros; Elim (zerop x0); Intro.
Rewrite a in H2; Simpl in H2; Left; Assumption.
Right; Elim Hrecl; Intros; Apply H4; Assert H5 : (S (pred x0))=x0.
Symmetry; Apply S_pred with O; Assumption.
Exists (pred x0); Split; [Simpl in H1; Apply lt_S_n; Rewrite H5; Assumption | Rewrite <- H5 in H2; Simpl in H2; Assumption].
Qed.
Lemma Rlist_P1 : (l:Rlist;P:R->R->Prop) ((x:R)(In x l)->(EXT y:R | (P x y))) -> (EXT l':Rlist | (Rlength l)=(Rlength l')/\(i:nat) (lt i (Rlength l))->(P (pos_Rl l i) (pos_Rl l' i))).
Intros; Induction l.
Exists nil; Intros; Split; [Reflexivity | Intros; Simpl in H0; Elim (lt_n_O ? H0)].
Assert H0 : (In r (cons r l)).
Simpl; Left; Reflexivity.
Assert H1 := (H ? H0); Assert H2 : (x:R)(In x l)->(EXT y:R | (P x y)).
Intros; Apply H; Simpl; Right; Assumption.
Assert H3 := (Hrecl H2); Elim H1; Intros; Elim H3; Intros; Exists (cons x x0); Intros; Elim H5; Clear H5; Intros; Split.
Simpl; Rewrite H5; Reflexivity.
Intros; Elim (zerop i); Intro.
Rewrite a; Simpl; Assumption.
Assert H8 : i=(S (pred i)).
Apply S_pred with O; Assumption.
Rewrite H8; Simpl; Apply H6; Simpl in H7; Apply lt_S_n; Rewrite <- H8; Assumption.
Qed.
Definition ordered_Rlist [l:Rlist] : Prop := (i:nat) (lt i (pred (Rlength l))) -> (Rle (pos_Rl l i) (pos_Rl l (S i))).
Fixpoint insert [l:Rlist] : R->Rlist :=
[x:R] Cases l of
| nil => (cons x nil)
| (cons a l') =>
Cases (total_order_Rle a x) of
| (leftT _) => (cons a (insert l' x))
| (rightT _) => (cons x l)
end
end.
Fixpoint cons_Rlist [l:Rlist] : Rlist->Rlist :=
[k:Rlist] Cases l of
| nil => k
| (cons a l') => (cons a (cons_Rlist l' k)) end.
Fixpoint cons_ORlist [k:Rlist] : Rlist->Rlist :=
[l:Rlist] Cases k of
| nil => l
| (cons a k') => (cons_ORlist k' (insert l a))
end.
Fixpoint app_Rlist [l:Rlist] : (R->R)->Rlist :=
[f:R->R] Cases l of
| nil => nil
| (cons a l') => (cons (f a) (app_Rlist l' f))
end.
Fixpoint mid_Rlist [l:Rlist] : R->Rlist :=
[x:R] Cases l of
| nil => nil
| (cons a l') => (cons ``(x+a)/2`` (mid_Rlist l' a))
end.
Definition Rtail [l:Rlist] : Rlist :=
Cases l of
| nil => nil
| (cons a l') => l'
end.
Definition FF [l:Rlist;f:R->R] : Rlist :=
Cases l of
| nil => nil
| (cons a l') => (app_Rlist (mid_Rlist l' a) f)
end.
Lemma RList_P0 : (l:Rlist;a:R) ``(pos_Rl (insert l a) O) == a`` \/ ``(pos_Rl (insert l a) O) == (pos_Rl l O)``.
Intros; Induction l; [Left; Reflexivity | Simpl; Case (total_order_Rle r a); Intro; [Right; Reflexivity | Left; Reflexivity]].
Qed.
Lemma RList_P1 : (l:Rlist;a:R) (ordered_Rlist l) -> (ordered_Rlist (insert l a)).
Intros; Induction l.
Simpl; Unfold ordered_Rlist; Intros; Simpl in H0; Elim (lt_n_O ? H0).
Simpl; Case (total_order_Rle r a); Intro.
Assert H1 : (ordered_Rlist l).
Unfold ordered_Rlist; Unfold ordered_Rlist in H; Intros; Assert H1 : (lt (S i) (pred (Rlength (cons r l)))); [Simpl; Replace (Rlength l) with (S (pred (Rlength l))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Simpl in H0; Elim (lt_n_O ? H0)] | Apply (H ? H1)].
Assert H2 := (Hrecl H1); Unfold ordered_Rlist; Intros; Induction i.
Simpl; Assert H3 := (RList_P0 l a); Elim H3; Intro.
Rewrite H4; Assumption.
Induction l; [Simpl; Assumption | Rewrite H4; Apply (H O); Simpl; Apply lt_O_Sn].
Simpl; Apply H2; Simpl in H0; Apply lt_S_n; Replace (S (pred (Rlength (insert l a)))) with (Rlength (insert l a)); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H3 in H0; Elim (lt_n_O ? H0)].
Unfold ordered_Rlist; Intros; Induction i; [Simpl; Auto with real | Change ``(pos_Rl (cons r l) i)<=(pos_Rl (cons r l) (S i))``; Apply H; Simpl in H0; Simpl; Apply (lt_S_n ? ? H0)].
Qed.
Lemma RList_P2 : (l1,l2:Rlist) (ordered_Rlist l2) ->(ordered_Rlist (cons_ORlist l1 l2)).
Induction l1; [Intros; Simpl; Apply H | Intros; Simpl; Apply H; Apply RList_P1; Assumption].
Qed.
Lemma RList_P3 : (l:Rlist;x:R) (In x l) <-> (EX i:nat | x==(pos_Rl l i)/\(lt i (Rlength l))).
Intros; Split; Intro; Induction l.
Elim H.
Elim H; Intro; [Exists O; Split; [Apply H0 | Simpl; Apply lt_O_Sn] | Elim (Hrecl H0); Intros; Elim H1; Clear H1; Intros; Exists (S x0); Split; [Apply H1 | Simpl; Apply lt_n_S; Assumption]].
Elim H; Intros; Elim H0; Intros; Elim (lt_n_O ? H2).
Simpl; Elim H; Intros; Elim H0; Clear H0; Intros; Induction x0; [Left; Apply H0 | Right; Apply Hrecl; Exists x0; Split; [Apply H0 | Simpl in H1; Apply lt_S_n; Assumption]].
Qed.
Lemma RList_P4 : (l1:Rlist;a:R) (ordered_Rlist (cons a l1)) -> (ordered_Rlist l1).
Intros; Unfold ordered_Rlist; Intros; Apply (H (S i)); Simpl; Replace (Rlength l1) with (S (pred (Rlength l1))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H1 in H0; Elim (lt_n_O ? H0)].
Qed.
Lemma RList_P5 : (l:Rlist;x:R) (ordered_Rlist l) -> (In x l) -> ``(pos_Rl l O)<=x``.
Intros; Induction l; [Elim H0 | Simpl; Elim H0; Intro; [Rewrite H1; Right; Reflexivity | Apply Rle_trans with (pos_Rl l O); [Apply (H O); Simpl; Induction l; [Elim H1 | Simpl; Apply lt_O_Sn] | Apply Hrecl; [EApply RList_P4; Apply H | Assumption]]]].
Qed.
Lemma RList_P6 : (l:Rlist) (ordered_Rlist l)<->((i,j:nat)(le i j)->(lt j (Rlength l))->``(pos_Rl l i)<=(pos_Rl l j)``).
Induction l; Split; Intro.
Intros; Right; Reflexivity.
Unfold ordered_Rlist; Intros; Simpl in H0; Elim (lt_n_O ? H0).
Intros; Induction i; [Induction j; [Right; Reflexivity | Simpl; Apply Rle_trans with (pos_Rl r0 O); [Apply (H0 O); Simpl; Simpl in H2; Apply neq_O_lt; Red; Intro; Rewrite <- H3 in H2; Assert H4 := (lt_S_n ? ? H2); Elim (lt_n_O ? H4) | Elim H; Intros; Apply H3; [Apply RList_P4 with r; Assumption | Apply le_O_n | Simpl in H2; Apply lt_S_n; Assumption]]] | Induction j; [Elim (le_Sn_O ? H1) | Simpl; Elim H; Intros; Apply H3; [Apply RList_P4 with r; Assumption | Apply le_S_n; Assumption | Simpl in H2; Apply lt_S_n; Assumption]]].
Unfold ordered_Rlist; Intros; Apply H0; [Apply le_n_Sn | Simpl; Simpl in H1; Apply lt_n_S; Assumption].
Qed.
Lemma RList_P7 : (l:Rlist;x:R) (ordered_Rlist l) -> (In x l) -> ``x<=(pos_Rl l (pred (Rlength l)))``.
Intros; Assert H1 := (RList_P6 l); Elim H1; Intros H2 _; Assert H3 := (H2 H); Clear H1 H2; Assert H1 := (RList_P3 l x); Elim H1; Clear H1; Intros; Assert H4 := (H1 H0); Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Rewrite H4; Assert H6 : (Rlength l)=(S (pred (Rlength l))).
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H6 in H5; Elim (lt_n_O ? H5).
Apply H3; [Rewrite H6 in H5; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H7 in H5; Elim (lt_n_O ? H5)].
Qed.
Lemma RList_P8 : (l:Rlist;a,x:R) (In x (insert l a)) <-> x==a\/(In x l).
Induction l.
Intros; Split; Intro; Simpl in H; Apply H.
Intros; Split; Intro; [Simpl in H0; Generalize H0; Case (total_order_Rle r a); Intros; [Simpl in H1; Elim H1; Intro; [Right; Left; Assumption |Elim (H a x); Intros; Elim (H3 H2); Intro; [Left; Assumption | Right; Right; Assumption]] | Simpl in H1; Decompose [or] H1; [Left; Assumption | Right; Left; Assumption | Right; Right; Assumption]] | Simpl; Case (total_order_Rle r a); Intro; [Simpl in H0; Decompose [or] H0; [Right; Elim (H a x); Intros; Apply H3; Left | Left | Right; Elim (H a x); Intros; Apply H3; Right] | Simpl in H0; Decompose [or] H0; [Left | Right; Left | Right; Right]]; Assumption].
Qed.
Lemma RList_P9 : (l1,l2:Rlist;x:R) (In x (cons_ORlist l1 l2)) <-> (In x l1)\/(In x l2).
Induction l1.
Intros; Split; Intro; [Simpl in H; Right; Assumption | Simpl; Elim H; Intro; [Elim H0 | Assumption]].
Intros; Split.
Simpl; Intros; Elim (H (insert l2 r) x); Intros; Assert H3 := (H1 H0); Elim H3; Intro; [Left; Right; Assumption | Elim (RList_P8 l2 r x); Intros H5 _; Assert H6 := (H5 H4); Elim H6; Intro; [Left; Left; Assumption | Right; Assumption]].
Intro; Simpl; Elim (H (insert l2 r) x); Intros _ H1; Apply H1; Elim H0; Intro; [Elim H2; Intro; [Right; Elim (RList_P8 l2 r x); Intros _ H4; Apply H4; Left; Assumption | Left; Assumption] | Right; Elim (RList_P8 l2 r x); Intros _ H3; Apply H3; Right; Assumption].
Qed.
Lemma RList_P10 : (l:Rlist;a:R) (Rlength (insert l a))==(S (Rlength l)).
Intros; Induction l; [Reflexivity | Simpl; Case (total_order_Rle r a); Intro; [Simpl; Rewrite Hrecl; Reflexivity | Reflexivity]].
Qed.
Lemma RList_P11 : (l1,l2:Rlist) (Rlength (cons_ORlist l1 l2))=(plus (Rlength l1) (Rlength l2)).
Induction l1; [Intro; Reflexivity | Intros; Simpl; Rewrite (H (insert l2 r)); Rewrite RList_P10; Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring].
Qed.
Lemma RList_P12 : (l:Rlist;i:nat;f:R->R) (lt i (Rlength l)) -> (pos_Rl (app_Rlist l f) i)==(f (pos_Rl l i)).
Induction l; [Intros; Elim (lt_n_O ? H) | Intros; Induction i; [Reflexivity | Simpl; Apply H; Apply lt_S_n; Apply H0]].
Qed.
Lemma RList_P13 : (l:Rlist;i:nat;a:R) (lt i (pred (Rlength l))) -> ``(pos_Rl (mid_Rlist l a) (S i)) == ((pos_Rl l i)+(pos_Rl l (S i)))/2``.
Induction l.
Intros; Simpl in H; Elim (lt_n_O ? H).
Induction r0.
Intros; Simpl in H0; Elim (lt_n_O ? H0).
Intros; Simpl in H1; Induction i.
Reflexivity.
Change ``(pos_Rl (mid_Rlist (cons r1 r2) r) (S i)) == ((pos_Rl (cons r1 r2) i)+(pos_Rl (cons r1 r2) (S i)))/2``; Apply H0; Simpl; Apply lt_S_n; Assumption.
Qed.
Lemma RList_P14 : (l:Rlist;a:R) (Rlength (mid_Rlist l a))=(Rlength l).
Induction l; Intros; [Reflexivity | Simpl; Rewrite (H r); Reflexivity].
Qed.
Lemma RList_P15 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> (pos_Rl l1 O)==(pos_Rl l2 O) -> (pos_Rl (cons_ORlist l1 l2) O)==(pos_Rl l1 O).
Intros; Apply Rle_antisym.
Induction l1; [Simpl; Simpl in H1; Right; Symmetry; Assumption | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (0))); Intros; Assert H4 : (In (pos_Rl (cons r l1) (0)) (cons r l1))\/(In (pos_Rl (cons r l1) (0)) l2); [Left; Left; Reflexivity | Assert H5 := (H3 H4); Apply RList_P5; [Apply RList_P2; Assumption | Assumption]]].
Induction l1; [Simpl; Simpl in H1; Right; Assumption | Assert H2 : (In (pos_Rl (cons_ORlist (cons r l1) l2) (0)) (cons_ORlist (cons r l1) l2)); [Elim (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) (0))); Intros; Apply H3; Exists O; Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_O_Sn] | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) (0))); Intros; Assert H5 := (H3 H2); Elim H5; Intro; [Apply RList_P5; Assumption | Rewrite H1; Apply RList_P5; Assumption]]].
Qed.
Lemma RList_P16 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> (pos_Rl l1 (pred (Rlength l1)))==(pos_Rl l2 (pred (Rlength l2))) -> (pos_Rl (cons_ORlist l1 l2) (pred (Rlength (cons_ORlist l1 l2))))==(pos_Rl l1 (pred (Rlength l1))).
Intros; Apply Rle_antisym.
Induction l1.
Simpl; Simpl in H1; Right; Symmetry; Assumption.
Assert H2 : (In (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2)))) (cons_ORlist (cons r l1) l2)); [Elim (RList_P3 (cons_ORlist (cons r l1) l2) (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2))))); Intros; Apply H3; Exists (pred (Rlength (cons_ORlist (cons r l1) l2))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn] | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) (pred (Rlength (cons_ORlist (cons r l1) l2))))); Intros; Assert H5 := (H3 H2); Elim H5; Intro; [Apply RList_P7; Assumption | Rewrite H1; Apply RList_P7; Assumption]].
Induction l1.
Simpl; Simpl in H1; Right; Assumption.
Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Assert H4 : (In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) (cons r l1))\/(In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) l2); [Left; Change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1)); Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (Rlength l1))); Intros; Apply H5; Exists (Rlength l1); Split; [Reflexivity | Simpl; Apply lt_n_Sn] | Assert H5 := (H3 H4); Apply RList_P7; [Apply RList_P2; Assumption | Elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Apply H7; Left; Elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (pred (Rlength (cons r l1))))); Intros; Apply H9; Exists (pred (Rlength (cons r l1))); Split; [Reflexivity | Simpl; Apply lt_n_Sn]]].
Qed.
Lemma RList_P17 : (l1:Rlist;x:R;i:nat) (ordered_Rlist l1) -> (In x l1) -> ``(pos_Rl l1 i)<x`` -> (lt i (pred (Rlength l1))) -> ``(pos_Rl l1 (S i))<=x``.
Induction l1.
Intros; Elim H0.
Intros; Induction i.
Simpl; Elim H1; Intro; [Simpl in H2; Rewrite H4 in H2; Elim (Rlt_antirefl ? H2) | Apply RList_P5; [Apply RList_P4 with r; Assumption | Assumption]].
Simpl; Simpl in H2; Elim H1; Intro.
Rewrite H4 in H2; Assert H5 : ``r<=(pos_Rl r0 i)``; [Apply Rle_trans with (pos_Rl r0 O); [Apply (H0 O); Simpl; Simpl in H3; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3) | Elim (RList_P6 r0); Intros; Apply H5; [Apply RList_P4 with r; Assumption | Apply le_O_n | Simpl in H3; Apply lt_S_n; Apply lt_trans with (Rlength r0); [Apply H3 | Apply lt_n_Sn]]] | Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H2))].
Apply H; Try Assumption; [Apply RList_P4 with r; Assumption | Simpl in H3; Apply lt_S_n; Replace (S (pred (Rlength r0))) with (Rlength r0); [Apply H3 | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H5 in H3; Elim (lt_n_O ? H3)]].
Qed.
Lemma RList_P18 : (l:Rlist;f:R->R) (Rlength (app_Rlist l f))=(Rlength l).
Induction l; Intros; [Reflexivity | Simpl; Rewrite H; Reflexivity].
Qed.
Lemma RList_P19 : (l:Rlist) ~l==nil -> (EXT r:R | (EXT r0:Rlist | l==(cons r r0))).
Intros; Induction l; [Elim H; Reflexivity | Exists r; Exists l; Reflexivity].
Qed.
Lemma RList_P20 : (l:Rlist) (le (2) (Rlength l)) -> (EXT r:R | (EXT r1:R | (EXT l':Rlist | l==(cons r (cons r1 l'))))).
Intros; Induction l; [Simpl in H; Elim (le_Sn_O ? H) | Induction l; [Simpl in H; Elim (le_Sn_O ? (le_S_n ? ? H)) | Exists r; Exists r0; Exists l; Reflexivity]].
Qed.
Lemma RList_P21 : (l,l':Rlist) l==l' -> (Rtail l)==(Rtail l').
Intros; Rewrite H; Reflexivity.
Qed.
Lemma RList_P22 : (l1,l2:Rlist) ~l1==nil -> (pos_Rl (cons_Rlist l1 l2) O)==(pos_Rl l1 O).
Induction l1; [Intros; Elim H; Reflexivity | Intros; Reflexivity].
Qed.
Lemma RList_P23 : (l1,l2:Rlist) (Rlength (cons_Rlist l1 l2))==(plus (Rlength l1) (Rlength l2)).
Induction l1; [Intro; Reflexivity | Intros; Simpl; Rewrite H; Reflexivity].
Qed.
Lemma RList_P24 : (l1,l2:Rlist) ~l2==nil -> (pos_Rl (cons_Rlist l1 l2) (pred (Rlength (cons_Rlist l1 l2)))) == (pos_Rl l2 (pred (Rlength l2))).
Induction l1.
Intros; Reflexivity.
Intros; Rewrite <- (H l2 H0); Induction l2.
Elim H0; Reflexivity.
Do 2 Rewrite RList_P23; Replace (plus (Rlength (cons r r0)) (Rlength (cons r1 l2))) with (S (S (plus (Rlength r0) (Rlength l2)))); [Replace (plus (Rlength r0) (Rlength (cons r1 l2))) with (S (plus (Rlength r0) (Rlength l2))); [Reflexivity | Simpl; Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring] | Simpl; Apply INR_eq; Do 3 Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite S_INR; Ring].
Qed.
Lemma RList_P25 : (l1,l2:Rlist) (ordered_Rlist l1) -> (ordered_Rlist l2) -> ``(pos_Rl l1 (pred (Rlength l1)))<=(pos_Rl l2 O)`` -> (ordered_Rlist (cons_Rlist l1 l2)).
Induction l1.
Intros; Simpl; Assumption.
Induction r0.
Intros; Simpl; Simpl in H2; Unfold ordered_Rlist; Intros; Simpl in H3.
Induction i.
Simpl; Assumption.
Change ``(pos_Rl l2 i)<=(pos_Rl l2 (S i))``; Apply (H1 i); Apply lt_S_n; Replace (S (pred (Rlength l2))) with (Rlength l2); [Assumption | Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H4 in H3; Elim (lt_n_O ? H3)].
Intros; Clear H; Assert H : (ordered_Rlist (cons_Rlist (cons r1 r2) l2)).
Apply H0; Try Assumption.
Apply RList_P4 with r; Assumption.
Unfold ordered_Rlist; Intros; Simpl in H4; Induction i.
Simpl; Apply (H1 O); Simpl; Apply lt_O_Sn.
Change ``(pos_Rl (cons_Rlist (cons r1 r2) l2) i)<=(pos_Rl (cons_Rlist (cons r1 r2) l2) (S i))``; Apply (H i); Simpl; Apply lt_S_n; Assumption.
Qed.
Lemma RList_P26 : (l1,l2:Rlist;i:nat) (lt i (Rlength l1)) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l1 i).
Induction l1.
Intros; Elim (lt_n_O ? H).
Intros; Induction i.
Apply RList_P22; Discriminate.
Apply (H l2 i); Simpl in H0; Apply lt_S_n; Assumption.
Qed.
Lemma RList_P27 : (l1,l2,l3:Rlist) (cons_Rlist l1 (cons_Rlist l2 l3))==(cons_Rlist (cons_Rlist l1 l2) l3).
Induction l1; Intros; [Reflexivity | Simpl; Rewrite (H l2 l3); Reflexivity].
Qed.
Lemma RList_P28 : (l:Rlist) (cons_Rlist l nil)==l.
Induction l; [Reflexivity | Intros; Simpl; Rewrite H; Reflexivity].
Qed.
Lemma RList_P29 : (l2,l1:Rlist;i:nat) (le (Rlength l1) i) -> (lt i (Rlength (cons_Rlist l1 l2))) -> (pos_Rl (cons_Rlist l1 l2) i)==(pos_Rl l2 (minus i (Rlength l1))).
Induction l2.
Intros; Rewrite RList_P28 in H0; Elim (lt_n_n ? (le_lt_trans ? ? ? H H0)).
Intros; Replace (cons_Rlist l1 (cons r r0)) with (cons_Rlist (cons_Rlist l1 (cons r nil)) r0).
Inversion H0.
Rewrite <- minus_n_n; Simpl; Rewrite RList_P26.
Clear l2 r0 H i H0 H1 H2; Induction l1.
Reflexivity.
Simpl; Assumption.
Rewrite RList_P23; Rewrite plus_sym; Simpl; Apply lt_n_Sn.
Replace (minus (S m) (Rlength l1)) with (S (minus (S m) (S (Rlength l1)))).
Rewrite H3; Simpl; Replace (S (Rlength l1)) with (Rlength (cons_Rlist l1 (cons r nil))).
Apply (H (cons_Rlist l1 (cons r nil)) i).
Rewrite RList_P23; Rewrite plus_sym; Simpl; Rewrite <- H3; Apply le_n_S; Assumption.
Repeat Rewrite RList_P23; Simpl; Rewrite RList_P23 in H1; Rewrite plus_sym in H1; Simpl in H1; Rewrite (plus_sym (Rlength l1)); Simpl; Rewrite plus_sym; Apply H1.
Rewrite RList_P23; Rewrite plus_sym; Reflexivity.
Change (S (minus m (Rlength l1)))=(minus (S m) (Rlength l1)); Apply minus_Sn_m; Assumption.
Replace (cons r r0) with (cons_Rlist (cons r nil) r0); [Symmetry; Apply RList_P27 | Reflexivity].
Qed.
|