1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Rbase.
Require Rfunctions.
Require Ranalysis1.
Require Rtopology.
V7only [Import R_scope.]. Open Local Scope R_scope.
(* The Mean Value Theorem *)
Theorem MVT : (f,g:R->R;a,b:R;pr1:(c:R)``a<c<b``->(derivable_pt f c);pr2:(c:R)``a<c<b``->(derivable_pt g c)) ``a<b`` -> ((c:R)``a<=c<=b``->(continuity_pt f c)) -> ((c:R)``a<=c<=b``->(continuity_pt g c)) -> (EXT c : R | (EXT P : ``a<c<b`` | ``((g b)-(g a))*(derive_pt f c (pr1 c P))==((f b)-(f a))*(derive_pt g c (pr2 c P))``)).
Intros; Assert H2 := (Rlt_le ? ? H).
Pose h := [y:R]``((g b)-(g a))*(f y)-((f b)-(f a))*(g y)``.
Cut (c:R)``a<c<b``->(derivable_pt h c).
Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt h c)).
Intro; Assert H4 := (continuity_ab_maj h a b H2 H3).
Assert H5 := (continuity_ab_min h a b H2 H3).
Elim H4; Intros Mx H6.
Elim H5; Intros mx H7.
Cut (h a)==(h b).
Intro; Pose M := (h Mx); Pose m := (h mx).
Cut (c:R;P:``a<c<b``) (derive_pt h c (X c P))==``((g b)-(g a))*(derive_pt f c (pr1 c P))-((f b)-(f a))*(derive_pt g c (pr2 c P))``.
Intro; Case (Req_EM (h a) M); Intro.
Case (Req_EM (h a) m); Intro.
Cut ((c:R)``a<=c<=b``->(h c)==M).
Intro; Cut ``a<(a+b)/2<b``.
(*** h constant ***)
Intro; Exists ``(a+b)/2``.
Exists H13.
Apply Rminus_eq; Rewrite <- H9; Apply deriv_constant2 with a b.
Elim H13; Intros; Assumption.
Elim H13; Intros; Assumption.
Intros; Rewrite (H12 ``(a+b)/2``).
Apply H12; Split; Left; Assumption.
Elim H13; Intros; Split; Left; Assumption.
Split.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply H.
DiscrR.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite Rplus_sym; Rewrite double; Apply Rlt_compatibility; Apply H.
DiscrR.
Intros; Elim H6; Intros H13 _.
Elim H7; Intros H14 _.
Apply Rle_antisym.
Apply H13; Apply H12.
Rewrite H10 in H11; Rewrite H11; Apply H14; Apply H12.
Cut ``a<mx<b``.
(*** h admet un minimum global sur [a,b] ***)
Intro; Exists mx.
Exists H12.
Apply Rminus_eq; Rewrite <- H9; Apply deriv_minimum with a b.
Elim H12; Intros; Assumption.
Elim H12; Intros; Assumption.
Intros; Elim H7; Intros.
Apply H15; Split; Left; Assumption.
Elim H7; Intros _ H12; Elim H12; Intros; Split.
Inversion H13.
Apply H15.
Rewrite H15 in H11; Elim H11; Reflexivity.
Inversion H14.
Apply H15.
Rewrite H8 in H11; Rewrite <- H15 in H11; Elim H11; Reflexivity.
Cut ``a<Mx<b``.
(*** h admet un maximum global sur [a,b] ***)
Intro; Exists Mx.
Exists H11.
Apply Rminus_eq; Rewrite <- H9; Apply deriv_maximum with a b.
Elim H11; Intros; Assumption.
Elim H11; Intros; Assumption.
Intros; Elim H6; Intros; Apply H14.
Split; Left; Assumption.
Elim H6; Intros _ H11; Elim H11; Intros; Split.
Inversion H12.
Apply H14.
Rewrite H14 in H10; Elim H10; Reflexivity.
Inversion H13.
Apply H14.
Rewrite H8 in H10; Rewrite <- H14 in H10; Elim H10; Reflexivity.
Intros; Unfold h; Replace (derive_pt [y:R]``((g b)-(g a))*(f y)-((f b)-(f a))*(g y)`` c (X c P)) with (derive_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c (derivable_pt_minus ? ? ? (derivable_pt_mult ? ? ? (derivable_pt_const ``(g b)-(g a)`` c) (pr1 c P)) (derivable_pt_mult ? ? ? (derivable_pt_const ``(f b)-(f a)`` c) (pr2 c P)))); [Idtac | Apply pr_nu].
Rewrite derive_pt_minus; Do 2 Rewrite derive_pt_mult; Do 2 Rewrite derive_pt_const; Do 2 Rewrite Rmult_Ol; Do 2 Rewrite Rplus_Ol; Reflexivity.
Unfold h; Ring.
Intros; Unfold h; Change (continuity_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c).
Apply continuity_pt_minus; Apply continuity_pt_mult.
Apply derivable_continuous_pt; Apply derivable_const.
Apply H0; Apply H3.
Apply derivable_continuous_pt; Apply derivable_const.
Apply H1; Apply H3.
Intros; Change (derivable_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c).
Apply derivable_pt_minus; Apply derivable_pt_mult.
Apply derivable_pt_const.
Apply (pr1 ? H3).
Apply derivable_pt_const.
Apply (pr2 ? H3).
Qed.
(* Corollaries ... *)
Lemma MVT_cor1 : (f:(R->R); a,b:R; pr:(derivable f)) ``a < b``->(EXT c:R | ``(f b)-(f a) == (derive_pt f c (pr c))*(b-a)``/\``a < c < b``).
Intros f a b pr H; Cut (c:R)``a<c<b``->(derivable_pt f c); [Intro | Intros; Apply pr].
Cut (c:R)``a<c<b``->(derivable_pt id c); [Intro | Intros; Apply derivable_pt_id].
Cut ((c:R)``a<=c<=b``->(continuity_pt f c)); [Intro | Intros; Apply derivable_continuous_pt; Apply pr].
Cut ((c:R)``a<=c<=b``->(continuity_pt id c)); [Intro | Intros; Apply derivable_continuous_pt; Apply derivable_id].
Assert H2 := (MVT f id a b X X0 H H0 H1).
Elim H2; Intros c H3; Elim H3; Intros.
Exists c; Split.
Cut (derive_pt id c (X0 c x)) == (derive_pt id c (derivable_pt_id c)); [Intro | Apply pr_nu].
Rewrite H5 in H4; Rewrite (derive_pt_id c) in H4; Rewrite Rmult_1r in H4; Rewrite <- H4; Replace (derive_pt f c (X c x)) with (derive_pt f c (pr c)); [Idtac | Apply pr_nu]; Apply Rmult_sym.
Apply x.
Qed.
Theorem MVT_cor2 : (f,f':R->R;a,b:R) ``a<b`` -> ((c:R)``a<=c<=b``->(derivable_pt_lim f c (f' c))) -> (EXT c:R | ``(f b)-(f a)==(f' c)*(b-a)``/\``a<c<b``).
Intros f f' a b H H0; Cut ((c:R)``a<=c<=b``->(derivable_pt f c)).
Intro; Cut ((c:R)``a<c<b``->(derivable_pt f c)).
Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt f c)).
Intro; Cut ((c:R)``a<=c<=b``->(derivable_pt id c)).
Intro; Cut ((c:R)``a<c<b``->(derivable_pt id c)).
Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt id c)).
Intro; Elim (MVT f id a b X0 X2 H H1 H2); Intros; Elim H3; Clear H3; Intros; Exists x; Split.
Cut (derive_pt id x (X2 x x0))==R1.
Cut (derive_pt f x (X0 x x0))==(f' x).
Intros; Rewrite H4 in H3; Rewrite H5 in H3; Unfold id in H3; Rewrite Rmult_1r in H3; Rewrite Rmult_sym; Symmetry; Assumption.
Apply derive_pt_eq_0; Apply H0; Elim x0; Intros; Split; Left; Assumption.
Apply derive_pt_eq_0; Apply derivable_pt_lim_id.
Assumption.
Intros; Apply derivable_continuous_pt; Apply X1; Assumption.
Intros; Apply derivable_pt_id.
Intros; Apply derivable_pt_id.
Intros; Apply derivable_continuous_pt; Apply X; Assumption.
Intros; Elim H1; Intros; Apply X; Split; Left; Assumption.
Intros; Unfold derivable_pt; Apply Specif.existT with (f' c); Apply H0; Apply H1.
Qed.
Lemma MVT_cor3 : (f,f':(R->R); a,b:R) ``a < b`` -> ((x:R)``a <= x`` -> ``x <= b``->(derivable_pt_lim f x (f' x))) -> (EXT c:R | ``a<=c``/\``c<=b``/\``(f b)==(f a) + (f' c)*(b-a)``).
Intros f f' a b H H0; Assert H1 : (EXT c:R | ``(f b) -(f a) == (f' c)*(b-a)``/\``a<c<b``); [Apply MVT_cor2; [Apply H | Intros; Elim H1; Intros; Apply (H0 ? H2 H3)] | Elim H1; Intros; Exists x; Elim H2; Intros; Elim H4; Intros; Split; [Left; Assumption | Split; [Left; Assumption | Rewrite <- H3; Ring]]].
Qed.
Lemma Rolle : (f:R->R;a,b:R;pr:(x:R)``a<x<b``->(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ``a<b`` -> (f a)==(f b) -> (EXT c:R | (EXT P: ``a<c<b`` | ``(derive_pt f c (pr c P))==0``)).
Intros; Assert H2 : (x:R)``a<x<b``->(derivable_pt id x).
Intros; Apply derivable_pt_id.
Assert H3 := (MVT f id a b pr H2 H0 H); Assert H4 : (x:R)``a<=x<=b``->(continuity_pt id x).
Intros; Apply derivable_continuous; Apply derivable_id.
Elim (H3 H4); Intros; Elim H5; Intros; Exists x; Exists x0; Rewrite H1 in H6; Unfold id in H6; Unfold Rminus in H6; Rewrite Rplus_Ropp_r in H6; Rewrite Rmult_Ol in H6; Apply r_Rmult_mult with ``b-a``; [Rewrite Rmult_Or; Apply H6 | Apply Rminus_eq_contra; Red; Intro; Rewrite H7 in H0; Elim (Rlt_antirefl ? H0)].
Qed.
(**********)
Lemma nonneg_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``0<=(derive_pt f x (pr x))``) -> (increasing f).
Intros.
Unfold increasing.
Intros.
Case (total_order_T x y); Intro.
Elim s; Intro.
Apply Rle_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H1 := (MVT_cor1 f ? ? pr a).
Elim H1; Intros.
Elim H2; Intros.
Unfold Rminus in H3.
Rewrite H3.
Apply Rmult_le_pos.
Apply H.
Apply Rle_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring].
Rewrite b; Right; Reflexivity.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)).
Qed.
(**********)
Lemma nonpos_derivative_0 : (f:R->R;pr:(derivable f)) (decreasing f) -> ((x:R) ``(derive_pt f x (pr x))<=0``).
Intros f pr H x; Assert H0 :=H; Unfold decreasing in H0; Generalize (derivable_derive f x (pr x)); Intro; Elim H1; Intros l H2.
Rewrite H2; Case (total_order l R0); Intro.
Left; Assumption.
Elim H3; Intro.
Right; Assumption.
Generalize (derive_pt_eq_1 f x l (pr x) H2); Intros; Cut ``0< (l/2)``.
Intro; Elim (H5 ``(l/2)`` H6); Intros delta H7; Cut ``delta/2<>0``/\``0<delta/2``/\``(Rabsolu delta/2)<delta``.
Intro; Decompose [and] H8; Intros; Generalize (H7 ``delta/2`` H9 H12); Cut ``((f (x+delta/2))-(f x))/(delta/2)<=0``.
Intro; Cut ``0< -(((f (x+delta/2))-(f x))/(delta/2)-l)``.
Intro; Unfold Rabsolu; Case (case_Rabsolu ``((f (x+delta/2))-(f x))/(delta/2)-l``).
Intros; Generalize (Rlt_compatibility_r ``-l`` ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` ``(l/2)`` H14); Unfold Rminus.
Replace ``(l/2)+ -l`` with ``-(l/2)``.
Replace `` -(((f (x+delta/2))+ -(f x))/(delta/2)+ -l)+ -l`` with ``-(((f (x+delta/2))+ -(f x))/(delta/2))``.
Intro.
Generalize (Rlt_Ropp ``-(((f (x+delta/2))+ -(f x))/(delta/2))`` ``-(l/2)`` H15).
Repeat Rewrite Ropp_Ropp.
Intro.
Generalize (Rlt_trans ``0`` ``l/2`` ``((f (x+delta/2))-(f x))/(delta/2)`` H6 H16); Intro.
Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``((f (x+delta/2))-(f x))/(delta/2)`` ``0`` H17 H10)).
Ring.
Pattern 3 l; Rewrite double_var.
Ring.
Intros.
Generalize (Rge_Ropp ``((f (x+delta/2))-(f x))/(delta/2)-l`` ``0`` r).
Rewrite Ropp_O.
Intro.
Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` ``0`` H13 H15)).
Replace ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` with ``(((f (x))-(f (x+delta/2)))/(delta/2)) +l``.
Unfold Rminus.
Apply ge0_plus_gt0_is_gt0.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H0 x ``x+(delta*/2)`` H13); Intro; Generalize (Rle_compatibility ``-(f (x+delta/2))`` ``(f (x+delta/2))`` ``(f x)`` H14); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_Rinv; Assumption.
Assumption.
Rewrite Ropp_distr2.
Unfold Rminus.
Rewrite (Rplus_sym l).
Unfold Rdiv.
Rewrite <- Ropp_mul1.
Rewrite Ropp_distr1.
Rewrite Ropp_Ropp.
Rewrite (Rplus_sym (f x)).
Reflexivity.
Replace ``((f (x+delta/2))-(f x))/(delta/2)`` with ``-(((f x)-(f (x+delta/2)))/(delta/2))``.
Rewrite <- Ropp_O.
Apply Rge_Ropp.
Apply Rle_sym1.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H0 x ``x+(delta*/2)`` H10); Intro.
Generalize (Rle_compatibility ``-(f (x+delta/2))`` ``(f (x+delta/2))`` ``(f x)`` H13); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_Rinv; Assumption.
Unfold Rdiv; Rewrite <- Ropp_mul1.
Rewrite Ropp_distr2.
Reflexivity.
Split.
Unfold Rdiv; Apply prod_neq_R0.
Generalize (cond_pos delta); Intro; Red; Intro H9; Rewrite H9 in H8; Elim (Rlt_antirefl ``0`` H8).
Apply Rinv_neq_R0; DiscrR.
Split.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Rewrite Rabsolu_right.
Unfold Rdiv; Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double; Pattern 1 (pos delta); Rewrite <- Rplus_Or.
Apply Rlt_compatibility; Apply (cond_pos delta).
DiscrR.
Apply Rle_sym1; Unfold Rdiv; Left; Apply Rmult_lt_pos.
Apply (cond_pos delta).
Apply Rlt_Rinv; Sup0.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply H4 | Apply Rlt_Rinv; Sup0].
Qed.
(**********)
Lemma increasing_decreasing_opp : (f:R->R) (increasing f) -> (decreasing (opp_fct f)).
Unfold increasing decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rge_Ropp; Apply Rle_sym1; Assumption.
Qed.
(**********)
Lemma nonpos_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<=0``) -> (decreasing f).
Intros.
Cut (h:R)``-(-(f h))==(f h)``.
Intro.
Generalize (increasing_decreasing_opp (opp_fct f)).
Unfold decreasing.
Unfold opp_fct.
Intros.
Rewrite <- (H0 x); Rewrite <- (H0 y).
Apply H1.
Cut (x:R)``0<=(derive_pt (opp_fct f) x ((derivable_opp f pr) x))``.
Intros.
Replace [x:R]``-(f x)`` with (opp_fct f); [Idtac | Reflexivity].
Apply (nonneg_derivative_1 (opp_fct f) (derivable_opp f pr) H3).
Intro.
Assert H3 := (derive_pt_opp f x0 (pr x0)).
Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``.
Intro.
Rewrite <- H4.
Rewrite H3.
Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Apply (H x0).
Apply pr_nu.
Assumption.
Intro; Ring.
Qed.
(**********)
Lemma positive_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``0<(derive_pt f x (pr x))``)->(strict_increasing f).
Intros.
Unfold strict_increasing.
Intros.
Apply Rlt_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H1 := (MVT_cor1 f ? ? pr H0).
Elim H1; Intros.
Elim H2; Intros.
Unfold Rminus in H3.
Rewrite H3.
Apply Rmult_lt_pos.
Apply H.
Apply Rlt_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring].
Qed.
(**********)
Lemma strictincreasing_strictdecreasing_opp : (f:R->R) (strict_increasing f) ->
(strict_decreasing (opp_fct f)).
Unfold strict_increasing strict_decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rlt_Ropp; Assumption.
Qed.
(**********)
Lemma negative_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<0``)->(strict_decreasing f).
Intros.
Cut (h:R)``- (-(f h))==(f h)``.
Intros.
Generalize (strictincreasing_strictdecreasing_opp (opp_fct f)).
Unfold strict_decreasing opp_fct.
Intros.
Rewrite <- (H0 x).
Rewrite <- (H0 y).
Apply H1; [Idtac | Assumption].
Cut (x:R)``0<(derive_pt (opp_fct f) x (derivable_opp f pr x))``.
Intros; EApply positive_derivative; Apply H3.
Intro.
Assert H3 := (derive_pt_opp f x0 (pr x0)).
Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``.
Intro.
Rewrite <- H4; Rewrite H3.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Apply (H x0).
Apply pr_nu.
Intro; Ring.
Qed.
(**********)
Lemma null_derivative_0 : (f:R->R;pr:(derivable f)) (constant f)->((x:R) ``(derive_pt f x (pr x))==0``).
Intros.
Unfold constant in H.
Apply derive_pt_eq_0.
Intros; Exists (mkposreal ``1`` Rlt_R0_R1); Simpl; Intros.
Rewrite (H x ``x+h``); Unfold Rminus; Unfold Rdiv; Rewrite Rplus_Ropp_r; Rewrite Rmult_Ol; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Qed.
(**********)
Lemma increasing_decreasing : (f:R->R) (increasing f) -> (decreasing f) -> (constant f).
Unfold increasing decreasing constant; Intros; Case (total_order x y); Intro.
Generalize (Rlt_le x y H1); Intro; Apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)).
Elim H1; Intro.
Rewrite H2; Reflexivity.
Generalize (Rlt_le y x H2); Intro; Symmetry; Apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)).
Qed.
(**********)
Lemma null_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))==0``)->(constant f).
Intros.
Cut (x:R)``(derive_pt f x (pr x)) <= 0``.
Cut (x:R)``0 <= (derive_pt f x (pr x))``.
Intros.
Assert H2 := (nonneg_derivative_1 f pr H0).
Assert H3 := (nonpos_derivative_1 f pr H1).
Apply increasing_decreasing; Assumption.
Intro; Right; Symmetry; Apply (H x).
Intro; Right; Apply (H x).
Qed.
(**********)
Lemma derive_increasing_interv_ax : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> (((t:R) ``a<t<b`` -> ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<(f y)``)) /\ (((t:R) ``a<t<b`` -> ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<=(f y)``)).
Intros.
Split; Intros.
Apply Rlt_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H4 := (MVT_cor1 f ? ? pr H3).
Elim H4; Intros.
Elim H5; Intros.
Unfold Rminus in H6.
Rewrite H6.
Apply Rmult_lt_pos.
Apply H0.
Elim H7; Intros.
Split.
Elim H1; Intros.
Apply Rle_lt_trans with x; Assumption.
Elim H2; Intros.
Apply Rlt_le_trans with y; Assumption.
Apply Rlt_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring].
Apply Rle_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H4 := (MVT_cor1 f ? ? pr H3).
Elim H4; Intros.
Elim H5; Intros.
Unfold Rminus in H6.
Rewrite H6.
Apply Rmult_le_pos.
Apply H0.
Elim H7; Intros.
Split.
Elim H1; Intros.
Apply Rle_lt_trans with x; Assumption.
Elim H2; Intros.
Apply Rlt_le_trans with y; Assumption.
Apply Rle_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Left; Assumption | Ring].
Qed.
(**********)
Lemma derive_increasing_interv : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> ((t:R) ``a<t<b`` -> ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<(f y)``).
Intros.
Generalize (derive_increasing_interv_ax a b f pr H); Intro.
Elim H4; Intros H5 _; Apply (H5 H0 x y H1 H2 H3).
Qed.
(**********)
Lemma derive_increasing_interv_var : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> ((t:R) ``a<t<b`` -> ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<=(f y)``).
Intros a b f pr H H0 x y H1 H2 H3; Generalize (derive_increasing_interv_ax a b f pr H); Intro; Elim H4; Intros _ H5; Apply (H5 H0 x y H1 H2 H3).
Qed.
(**********)
(**********)
Theorem IAF : (f:R->R;a,b,k:R;pr:(derivable f)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt f c (pr c))<=k``) -> ``(f b)-(f a)<=k*(b-a)``.
Intros.
Case (total_order_T a b); Intro.
Elim s; Intro.
Assert H1 := (MVT_cor1 f ? ? pr a0).
Elim H1; Intros.
Elim H2; Intros.
Rewrite H3.
Do 2 Rewrite <- (Rmult_sym ``(b-a)``).
Apply Rle_monotony.
Apply Rle_anti_compatibility with ``a``; Rewrite Rplus_Or.
Replace ``a+(b-a)`` with b; [Assumption | Ring].
Apply H0.
Elim H4; Intros.
Split; Left; Assumption.
Rewrite b0.
Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r.
Rewrite Rmult_Or; Right; Reflexivity.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)).
Qed.
Lemma IAF_var : (f,g:R->R;a,b:R;pr1:(derivable f);pr2:(derivable g)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt g c (pr2 c))<=(derive_pt f c (pr1 c))``) -> ``(g b)-(g a)<=(f b)-(f a)``.
Intros.
Cut (derivable (minus_fct g f)).
Intro.
Cut (c:R)``a<=c<=b``->``(derive_pt (minus_fct g f) c (X c))<=0``.
Intro.
Assert H2 := (IAF (minus_fct g f) a b R0 X H H1).
Rewrite Rmult_Ol in H2; Unfold minus_fct in H2.
Apply Rle_anti_compatibility with ``-(f b)+(f a)``.
Replace ``-(f b)+(f a)+((f b)-(f a))`` with R0; [Idtac | Ring].
Replace ``-(f b)+(f a)+((g b)-(g a))`` with ``(g b)-(f b)-((g a)-(f a))``; [Apply H2 | Ring].
Intros.
Cut (derive_pt (minus_fct g f) c (X c))==(derive_pt (minus_fct g f) c (derivable_pt_minus ? ? ? (pr2 c) (pr1 c))).
Intro.
Rewrite H2.
Rewrite derive_pt_minus.
Apply Rle_anti_compatibility with (derive_pt f c (pr1 c)).
Rewrite Rplus_Or.
Replace ``(derive_pt f c (pr1 c))+((derive_pt g c (pr2 c))-(derive_pt f c (pr1 c)))`` with ``(derive_pt g c (pr2 c))``; [Idtac | Ring].
Apply H0; Assumption.
Apply pr_nu.
Apply derivable_minus; Assumption.
Qed.
(* If f has a null derivative in ]a,b[ and is continue in [a,b], *)
(* then f is constant on [a,b] *)
Lemma null_derivative_loc : (f:R->R;a,b:R;pr:(x:R)``a<x<b``->(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ((x:R;P:``a<x<b``)(derive_pt f x (pr x P))==R0) -> (constant_D_eq f [x:R]``a<=x<=b`` (f a)).
Intros; Unfold constant_D_eq; Intros; Case (total_order_T a b); Intro.
Elim s; Intro.
Assert H2 : (y:R)``a<y<x``->(derivable_pt id y).
Intros; Apply derivable_pt_id.
Assert H3 : (y:R)``a<=y<=x``->(continuity_pt id y).
Intros; Apply derivable_continuous; Apply derivable_id.
Assert H4 : (y:R)``a<y<x``->(derivable_pt f y).
Intros; Apply pr; Elim H4; Intros; Split.
Assumption.
Elim H1; Intros; Apply Rlt_le_trans with x; Assumption.
Assert H5 : (y:R)``a<=y<=x``->(continuity_pt f y).
Intros; Apply H; Elim H5; Intros; Split.
Assumption.
Elim H1; Intros; Apply Rle_trans with x; Assumption.
Elim H1; Clear H1; Intros; Elim H1; Clear H1; Intro.
Assert H7 := (MVT f id a x H4 H2 H1 H5 H3).
Elim H7; Intros; Elim H8; Intros; Assert H10 : ``a<x0<b``.
Elim x1; Intros; Split.
Assumption.
Apply Rlt_le_trans with x; Assumption.
Assert H11 : ``(derive_pt f x0 (H4 x0 x1))==0``.
Replace (derive_pt f x0 (H4 x0 x1)) with (derive_pt f x0 (pr x0 H10)); [Apply H0 | Apply pr_nu].
Assert H12 : ``(derive_pt id x0 (H2 x0 x1))==1``.
Apply derive_pt_eq_0; Apply derivable_pt_lim_id.
Rewrite H11 in H9; Rewrite H12 in H9; Rewrite Rmult_Or in H9; Rewrite Rmult_1r in H9; Apply Rminus_eq; Symmetry; Assumption.
Rewrite H1; Reflexivity.
Assert H2 : x==a.
Rewrite <- b0 in H1; Elim H1; Intros; Apply Rle_antisym; Assumption.
Rewrite H2; Reflexivity.
Elim H1; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? (Rle_trans ? ? ? H2 H3) r)).
Qed.
(* Unicity of the antiderivative *)
Lemma antiderivative_Ucte : (f,g1,g2:R->R;a,b:R) (antiderivative f g1 a b) -> (antiderivative f g2 a b) -> (EXT c:R | (x:R)``a<=x<=b``->``(g1 x)==(g2 x)+c``).
Unfold antiderivative; Intros; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _; Exists ``(g1 a)-(g2 a)``; Intros; Assert H3 : (x:R)``a<=x<=b``->(derivable_pt g1 x).
Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H x0 H3); Intros; EApply derive_pt_eq_1; Symmetry; Apply H4.
Assert H4 : (x:R)``a<=x<=b``->(derivable_pt g2 x).
Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H0 x0 H4); Intros; EApply derive_pt_eq_1; Symmetry; Apply H5.
Assert H5 : (x:R)``a<x<b``->(derivable_pt (minus_fct g1 g2) x).
Intros; Elim H5; Intros; Apply derivable_pt_minus; [Apply H3; Split; Left; Assumption | Apply H4; Split; Left; Assumption].
Assert H6 : (x:R)``a<=x<=b``->(continuity_pt (minus_fct g1 g2) x).
Intros; Apply derivable_continuous_pt; Apply derivable_pt_minus; [Apply H3 | Apply H4]; Assumption.
Assert H7 : (x:R;P:``a<x<b``)(derive_pt (minus_fct g1 g2) x (H5 x P))==``0``.
Intros; Elim P; Intros; Apply derive_pt_eq_0; Replace R0 with ``(f x0)-(f x0)``; [Idtac | Ring].
Assert H9 : ``a<=x0<=b``.
Split; Left; Assumption.
Apply derivable_pt_lim_minus; [Elim (H ? H9) | Elim (H0 ? H9)]; Intros; EApply derive_pt_eq_1; Symmetry; Apply H10.
Assert H8 := (null_derivative_loc (minus_fct g1 g2) a b H5 H6 H7); Unfold constant_D_eq in H8; Assert H9 := (H8 ? H2); Unfold minus_fct in H9; Rewrite <- H9; Ring.
Qed.
|