aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Zarith/Zmisc.v
blob: bc90b0612338abbcd9640431768af8c7a9000585 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

(*i $Id$ i*)

(********************************************************)
(* Module Zmisc.v :           				*)
(* Definitions et lemmes complementaires		*)
(* Division euclidienne					*)
(* Patrick Loiseleur, avril 1997			*)
(********************************************************)

Require fast_integer.
Require zarith_aux.
Require auxiliary.
Require Zsyntax.
Require Bool.

(**********************************************************************
 Overview of the sections of this file :

 - logic : Logic complements.
 - numbers : a few very simple lemmas for manipulating the
   constructors [POS], [NEG], [ZERO] and [xI], [xO], [xH]
 - registers : defining arrays of bits and their relation with integers.
 - iter : the n-th iterate of a function is defined for n:nat and n:positive.
   The two notions are identified and an invariant conservation theorem
   is proved.
 - recursors : Here a nat-like recursor is built.
 - arith : lemmas about [< <= ?= + *] ...

************************************************************************)

Section logic.

Lemma rename : (A:Set)(P:A->Prop)(x:A) ((y:A)(x=y)->(P y)) -> (P x).
Auto with arith. 
Save.

End logic.

Section numbers.

Definition entier_of_Z := [z:Z]Case z of Nul Pos Pos end.
Definition Z_of_entier := [x:entier]Case x of ZERO POS end.
 
(*i Coercion Z_of_entier : entier >-> Z. i*)

Lemma POS_xI : (p:positive) (POS (xI p))=`2*(POS p) + 1`.
Intro; Apply refl_equal.
Save.
Lemma POS_xO : (p:positive) (POS (xO p))=`2*(POS p)`.
Intro; Apply refl_equal.
Save.
Lemma NEG_xI : (p:positive) (NEG (xI p))=`2*(NEG p) - 1`.
Intro; Apply refl_equal.
Save.
Lemma NEG_xO : (p:positive) (NEG (xO p))=`2*(NEG p)`.
Intro; Apply refl_equal.
Save.

Lemma POS_add : (p,p':positive)`(POS (add p p'))=(POS p)+(POS p')`.
Induction p; Induction p'; Simpl; Auto with arith.
Save.

Lemma NEG_add : (p,p':positive)`(NEG (add p p'))=(NEG p)+(NEG p')`.
Induction p; Induction p'; Simpl; Auto with arith.
Save.

Definition Zle_bool := [x,y:Z]Case `x ?= y` of true true false end.
Definition Zge_bool := [x,y:Z]Case `x ?= y` of true false true end.
Definition Zlt_bool := [x,y:Z]Case `x ?= y` of false true false end.
Definition Zgt_bool := [x,y:Z]Case ` x ?= y` of false false true end.
Definition Zeq_bool := [x,y:Z]Cases `x ?= y` of EGAL => true | _ => false end.
Definition Zneq_bool := [x,y:Z]Cases `x ?= y` of EGAL =>false | _ => true end.

End numbers.

Section iterate.

(* l'itere n-ieme d'une fonction f*)
Fixpoint iter_nat[n:nat]  : (A:Set)(f:A->A)A->A :=
  [A:Set][f:A->A][x:A]
    Cases n of
      O => x
    | (S n') => (f (iter_nat n' A f x))
    end.

Fixpoint iter_pos[n:positive] : (A:Set)(f:A->A)A->A :=
  [A:Set][f:A->A][x:A]
    Cases n of
     	xH => (f x)
      | (xO n') => (iter_pos n' A f (iter_pos n' A f x))
      | (xI n') => (f (iter_pos n' A f (iter_pos n' A f x)))
    end.

Definition iter :=
  [n:Z][A:Set][f:A->A][x:A]Cases n of
    ZERO => x
  | (POS p) => (iter_pos p A f x)
  | (NEG p) => x
  end.

Theorem iter_nat_plus :
  (n,m:nat)(A:Set)(f:A->A)(x:A)
    (iter_nat (plus n m) A f x)=(iter_nat n A f (iter_nat m A f x)).
    
Induction n;
[ Simpl; Auto with arith
| Intros; Simpl; Apply f_equal with f:=f; Apply H
].  
Save.

Theorem iter_convert : (n:positive)(A:Set)(f:A->A)(x:A)
  (iter_pos n A f x) = (iter_nat (convert n) A f x).

Induction n;
[ Intros; Simpl; Rewrite -> (H A f x);
  Rewrite -> (H A f (iter_nat (convert p) A f x));
  Rewrite -> (ZL6 p); Symmetry; Apply f_equal with f:=f;
  Apply iter_nat_plus
| Intros; Unfold convert; Simpl; Rewrite -> (H A f x);
  Rewrite -> (H A f (iter_nat (convert p) A f x));
  Rewrite -> (ZL6 p); Symmetry;
  Apply iter_nat_plus
| Simpl; Auto with arith
].
Save.

Theorem iter_pos_add :
  (n,m:positive)(A:Set)(f:A->A)(x:A)
    (iter_pos (add n m) A f x)=(iter_pos n A f (iter_pos m A f x)).

Intros.
Rewrite -> (iter_convert m A f x).
Rewrite -> (iter_convert n A f (iter_nat (convert m) A f x)).
Rewrite -> (iter_convert (add n m) A f x).
Rewrite -> (convert_add n m).
Apply iter_nat_plus.
Save.

(* Preservation of invariants : if f : A->A preserves the invariant Inv, 
  then the iterates of f also preserve it. *)

Theorem iter_nat_invariant :
  (n:nat)(A:Set)(f:A->A)(Inv:A->Prop)
  ((x:A)(Inv x)->(Inv (f x)))->(x:A)(Inv x)->(Inv (iter_nat n A f x)).
Induction n; Intros;
[ Trivial with arith
| Simpl; Apply H0 with x:=(iter_nat n0 A f x); Apply H; Trivial with arith].
Save.

Theorem iter_pos_invariant :
  (n:positive)(A:Set)(f:A->A)(Inv:A->Prop)
  ((x:A)(Inv x)->(Inv (f x)))->(x:A)(Inv x)->(Inv (iter_pos n A f x)).
Intros; Rewrite iter_convert; Apply iter_nat_invariant; Trivial with arith.
Save.

End iterate.


Section arith.

Lemma ZERO_le_POS : (p:positive) `0 <= (POS p)`.
Intro; Unfold Zle; Unfold Zcompare; Discriminate.
Save.

Lemma POS_gt_ZERO : (p:positive) `(POS p) > 0`.
Intro; Unfold Zgt; Simpl; Trivial with arith.
Save.

Lemma Zlt_ZERO_pred_le_ZERO : (x:Z) `0 < x` -> `0 <= (Zpred x)`.
Intros.
Rewrite (Zs_pred x) in H.
Apply Zgt_S_le.
Apply Zlt_gt.
Assumption.
Save.

(* Zeven, Zodd, Zdiv2 and their related properties *)

Definition Zeven := 
  [z:Z]Cases z of ZERO => True
                | (POS (xO _)) => True
		| (NEG (xO _)) => True
		| _ => False
               end.

Definition Zodd := 
  [z:Z]Cases z of (POS xH) => True
                | (NEG xH) => True
                | (POS (xI _)) => True
		| (NEG (xI _)) => True
		| _ => False
               end.

Definition Zeven_bool :=
  [z:Z]Cases z of ZERO => true
                | (POS (xO _)) => true
		| (NEG (xO _)) => true
		| _ => false
               end.

Definition Zodd_bool := 
  [z:Z]Cases z of ZERO => false
                | (POS (xO _)) => false
		| (NEG (xO _)) => false
		| _ => true
               end.

Lemma Zeven_odd_dec : (z:Z) { (Zeven z) }+{ (Zodd z) }.
Proof.
  Intro z. Case z;
  [ Left; Compute; Trivial
  | Intro p; Case p; Intros; 
    (Right; Compute; Exact I) Orelse (Left; Compute; Exact I)
  | Intro p; Case p; Intros; 
    (Right; Compute; Exact I) Orelse (Left; Compute; Exact I) ].
  (*i was 
  Realizer Zeven_bool.
  Repeat Program; Compute; Trivial.
  i*)
Save.

Lemma Zeven_dec : (z:Z) { (Zeven z) }+{ ~(Zeven z) }.
Proof.
  Intro z. Case z;
  [ Left; Compute; Trivial
  | Intro p; Case p; Intros; 
    (Left; Compute; Exact I) Orelse (Right; Compute; Trivial) 
  | Intro p; Case p; Intros; 
    (Left; Compute; Exact I) Orelse (Right; Compute; Trivial) ].
  (*i was 
  Realizer Zeven_bool.
  Repeat Program; Compute; Trivial.
  i*)
Save.

Lemma Zodd_dec : (z:Z) { (Zodd z) }+{ ~(Zodd z) }.
Proof.
  Intro z. Case z;
  [ Right; Compute; Trivial
  | Intro p; Case p; Intros; 
    (Left; Compute; Exact I) Orelse (Right; Compute; Trivial) 
  | Intro p; Case p; Intros; 
    (Left; Compute; Exact I) Orelse (Right; Compute; Trivial) ].
  (*i was 
  Realizer Zodd_bool.
  Repeat Program; Compute; Trivial.
  i*)
Save.

Lemma Zeven_not_Zodd : (z:Z)(Zeven z) -> ~(Zodd z).
Proof.
  Destruct z; [ Idtac | Destruct p | Destruct p  ]; Compute; Trivial.
Save.

Lemma Zodd_not_Zeven : (z:Z)(Zodd z) -> ~(Zeven z).
Proof.
  Destruct z; [ Idtac | Destruct p | Destruct p  ]; Compute; Trivial.
Save.

Hints Unfold Zeven Zodd : zarith.

(* Zdiv2 is defined on all Z, but notice that for odd negative integers
 * it is not the euclidean quotient: in that case we have n = 2*(n/2)-1
 *)

Definition Zdiv2_pos :=
  [z:positive]Cases z of xH => xH
                       | (xO p) => p
		       | (xI p) => p
		      end.

Definition Zdiv2 :=
  [z:Z]Cases z of ZERO => ZERO
                | (POS xH) => ZERO
                | (POS p) => (POS (Zdiv2_pos p))
		| (NEG xH) => ZERO
		| (NEG p) => (NEG (Zdiv2_pos p))
	       end.

Lemma Zeven_div2 : (x:Z) (Zeven x) -> `x = 2*(Zdiv2 x)`.
Proof.
Destruct x.
Auto with arith.
Destruct p; Auto with arith.
Intros. Absurd (Zeven (POS (xI p0))); Red; Auto with arith.
Intros. Absurd (Zeven `1`); Red; Auto with arith.
Destruct p; Auto with arith.
Intros. Absurd (Zeven (NEG (xI p0))); Red; Auto with arith.
Intros. Absurd (Zeven `-1`); Red; Auto with arith.
Save.

Lemma Zodd_div2 : (x:Z) `x >= 0` -> (Zodd x) -> `x = 2*(Zdiv2 x)+1`.
Proof.
Destruct x.
Intros. Absurd (Zodd `0`); Red; Auto with arith.
Destruct p; Auto with arith.
Intros. Absurd (Zodd (POS (xO p0))); Red; Auto with arith.
Intros. Absurd `(NEG p) >= 0`; Red; Auto with arith.
Save.

Lemma Z_modulo_2 : (x:Z) `x >= 0` -> { y:Z | `x=2*y` }+{ y:Z | `x=2*y+1` }.
Proof.
Intros x Hx.
Elim (Zeven_odd_dec x); Intro.
Left. Split with (Zdiv2 x). Exact (Zeven_div2 x a).
Right. Split with (Zdiv2 x). Exact (Zodd_div2 x Hx b).
Save.

(* Very simple *)
Lemma Zminus_Zplus_compatible :
  (x,y,n:Z) `(x+n) - (y+n) = x - y`.
Intros.
Unfold Zminus.
Rewrite -> Zopp_Zplus.
Rewrite -> (Zplus_sym (Zopp y) (Zopp n)).
Rewrite -> Zplus_assoc.
Rewrite <- (Zplus_assoc x n (Zopp n)).
Rewrite -> (Zplus_inverse_r n).
Rewrite <- Zplus_n_O.
Reflexivity.
Save.

(* Decompose an egality between two ?= relations into 3 implications *)
Theorem Zcompare_egal_dec :
   (x1,y1,x2,y2:Z)
    (`x1 < y1`->`x2 < y2`)
     ->(`x1 ?= y1`=EGAL -> `x2 ?= y2`=EGAL)
        ->(`x1 > y1`->`x2 > y2`)->`x1 ?= y1`=`x2 ?= y2`.
Intros x1 y1 x2 y2.
Unfold Zgt; Unfold Zlt;
Case `x1 ?= y1`; Case `x2 ?= y2`; Auto with arith; Symmetry; Auto with arith.
Save.

Theorem Zcompare_elim :
  (c1,c2,c3:Prop)(x,y:Z)
    ((x=y) -> c1) ->(`x < y` -> c2) ->(`x > y`-> c3)
       -> Case `x ?= y`of c1 c2 c3 end.

Intros.
Apply rename with x:=`x ?= y`; Intro r; Elim r;
[ Intro; Apply H; Apply (let (h1, h2)=(Zcompare_EGAL x y) in h1); Assumption
| Unfold Zlt in H0; Assumption
| Unfold Zgt in H1; Assumption ].
Save.

Lemma Zcompare_x_x : (x:Z) `x ?= x` = EGAL.
Intro; Apply Case (Zcompare_EGAL x x) of [h1,h2: ?]h2 end.
Apply refl_equal.
Save.

Lemma Zlt_not_eq : (x,y:Z)`x < y` -> ~x=y.
Proof.
Intros.
Unfold Zlt in H.
Unfold not.
Intro.
Generalize (proj2 ? ? (Zcompare_EGAL x y) H0).
Intro.
Rewrite H1 in H.
Discriminate H.
Save.

Lemma Zcompare_eq_case : 
  (c1,c2,c3:Prop)(x,y:Z) c1 -> x=y -> (Case `x ?= y` of c1 c2 c3 end).
Intros.
Rewrite -> (Case (Zcompare_EGAL x y) of [h1,h2: ?]h2 end H0).
Assumption.
Save.

(* Four very basic lemmas about Zle, Zlt, Zge, Zgt *)
Lemma Zle_Zcompare :
  (x,y:Z)`x <= y` -> Case `x ?= y` of True True False end.
Intros x y; Unfold Zle; Elim `x ?=y`; Auto with arith.
Save.

Lemma Zlt_Zcompare :
  (x,y:Z)`x < y`  -> Case `x ?= y` of False True False end.
Intros x y; Unfold Zlt; Elim `x ?=y`; Intros; Discriminate Orelse Trivial with arith.
Save.

Lemma Zge_Zcompare :
  (x,y:Z)` x >= y`-> Case `x ?= y` of True False True end.
Intros x y; Unfold Zge; Elim `x ?=y`; Auto with arith. 
Save.

Lemma Zgt_Zcompare :
  (x,y:Z)`x > y` -> Case `x ?= y` of False False True end.
Intros x y; Unfold Zgt; Elim `x ?= y`; Intros; Discriminate Orelse Trivial with arith.
Save.

(* Lemmas about Zmin *)

Lemma Zmin_plus : (x,y,n:Z) `(Zmin (x+n)(y+n))=(Zmin x y)+n`.
Intros; Unfold Zmin.
Rewrite (Zplus_sym x n);
Rewrite (Zplus_sym y n);
Rewrite (Zcompare_Zplus_compatible x y n).
Case `x ?= y`; Apply Zplus_sym.
Save.

(* Lemmas about absolu *)

Lemma absolu_lt : (x,y:Z) `0 <= x < y` -> (lt (absolu x) (absolu y)).
Proof.
Intros x y. Case x; Simpl. Case y; Simpl.

Intro. Absurd `0 < 0`. Compute. Intro H0. Discriminate H0. Intuition.
Intros. Elim (ZL4 p). Intros. Rewrite H0. Auto with arith.
Intros. Elim (ZL4 p). Intros. Rewrite H0. Auto with arith.

Case y; Simpl.
Intros. Absurd `(POS p) < 0`. Compute. Intro H0. Discriminate H0. Intuition.
Intros. Change (gt (convert p) (convert p0)).
Apply compare_convert_SUPERIEUR.
Elim H; Auto with arith. Intro. Exact (ZC2 p0 p).

Intros. Absurd `(POS p0) < (NEG p)`.
Compute. Intro H0. Discriminate H0. Intuition.

Intros. Absurd `0 <= (NEG p)`. Compute. Auto with arith. Intuition.
Save.


End arith.