aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Zarith/ZArith_dec.v
blob: 403c95fadd90daf1b76abaf2e0f19c2ecdfb1fde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

(*i $Id$ i*)

Require Sumbool.

Require fast_integer.
Require zarith_aux.
Require auxiliary.
Require Zsyntax.

Lemma Dcompare_inf : (r:relation) {r=EGAL} + {r=INFERIEUR} + {r=SUPERIEUR}.
Proof.
Induction r; Auto with arith. 
Save.

Lemma Zcompare_rec :
  (P:Set)(x,y:Z)
    ((Zcompare x y)=EGAL -> P) ->
    ((Zcompare x y)=INFERIEUR -> P) ->
    ((Zcompare x y)=SUPERIEUR -> P) ->
    P.
Proof.
Intros P x y H1 H2 H3.
Elim (Dcompare_inf (Zcompare x y)).
Intro H. Elim H; Auto with arith. Auto with arith.
Save.


Section decidability.

Local inf_decidable := [P:Prop] {P}+{~P}.

Variables x,y : Z.


Theorem Z_eq_dec : (inf_decidable (x=y)).
Proof.
Unfold inf_decidable.
Apply Zcompare_rec with x:=x y:=y.
Intro. Left. Elim (Zcompare_EGAL x y); Auto with arith.
Intro H3. Right. Elim (Zcompare_EGAL x y). Intros H1 H2. Unfold not. Intro H4.
  Rewrite (H2 H4) in H3. Discriminate H3.
Intro H3. Right. Elim (Zcompare_EGAL x y). Intros H1 H2. Unfold not. Intro H4.
  Rewrite (H2 H4) in H3. Discriminate H3.
Save. 

Theorem Z_lt_dec : (inf_decidable (Zlt x y)).
Proof.
Unfold inf_decidable Zlt.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Right. Rewrite H. Discriminate.
Left; Assumption.
Right. Rewrite H. Discriminate.
Save.

Theorem Z_le_dec : (inf_decidable (Zle x y)).
Proof.
Unfold inf_decidable Zle.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Left. Rewrite H. Discriminate.
Left. Rewrite H. Discriminate.
Right. Tauto.
Save.

Theorem Z_gt_dec : (inf_decidable (Zgt x y)).
Proof.
Unfold inf_decidable Zgt.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Right. Rewrite H. Discriminate.
Right. Rewrite H. Discriminate.
Left; Assumption.
Save.

Theorem Z_ge_dec : (inf_decidable (Zge x y)).
Proof.
Unfold inf_decidable Zge.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Left. Rewrite H. Discriminate.
Right. Tauto.
Left. Rewrite H. Discriminate.
Save.

Theorem Z_lt_ge_dec : {`x < y`}+{`x >= y`}.
Proof Z_lt_dec.

Theorem Z_le_gt_dec : {`x <= y`}+{`x > y`}.
Proof.
Elim Z_le_dec; Auto with arith.
Intro. Right. Apply not_Zle; Auto with arith.
Save.

Theorem Z_gt_le_dec : {`x > y`}+{`x <= y`}.
Proof Z_gt_dec.

Theorem Z_ge_lt_dec : {`x >= y`}+{`x < y`}.
Proof.
Elim Z_ge_dec; Auto with arith.
Intro. Right. Apply not_Zge; Auto with arith.
Save.


Theorem Z_le_lt_eq_dec : `x <= y` -> {`x < y`}+{x=y}.
Proof.
Intro H.
Apply Zcompare_rec with x:=x y:=y.
Intro. Right. Elim (Zcompare_EGAL x y); Auto with arith.
Intro. Left. Elim (Zcompare_EGAL x y); Auto with arith.
Intro H1. Absurd `x > y`; Auto with arith.
Save.


End decidability.


Theorem Z_zerop : (x:Z){(`x = 0`)}+{(`x <> 0`)}.
Proof [x:Z](Z_eq_dec x ZERO).

Definition Z_notzerop := [x:Z](sumbool_not ? ? (Z_zerop x)).

Definition Z_noteq_dec := [x,y:Z](sumbool_not ? ? (Z_eq_dec x y)).