1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import ZArithRing.
Require Import Omega.
Require Export ZArith_base.
Local Open Scope Z_scope.
(** THIS FILE IS DEPRECATED
Instead of the various [Zsqrt] defined here, please use rather
[Z.sqrt] (or [Z.sqrtrem]). The latter are pure functions without
proof parts, and more results are available about them.
Some equivalence proofs between the old and the new versions
can be found below. Importing ZArith will provides by default
the new versions.
*)
(**********************************************************************)
(** Definition and properties of square root on Z *)
(** The following tactic replaces all instances of (POS (xI ...)) by
`2*(POS ...)+1`, but only when ... is not made only with xO, XI, or xH. *)
Ltac compute_POS :=
match goal with
| |- context [(Zpos (xI ?X1))] =>
match constr:(X1) with
| context [1%positive] => fail 1
| _ => rewrite (Pos2Z.inj_xI X1)
end
| |- context [(Zpos (xO ?X1))] =>
match constr:(X1) with
| context [1%positive] => fail 1
| _ => rewrite (Pos2Z.inj_xO X1)
end
end.
Inductive sqrt_data (n:Z) : Set :=
c_sqrt : forall s r:Z, n = s * s + r -> 0 <= r <= 2 * s -> sqrt_data n.
Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p).
refine
(fix sqrtrempos (p:positive) : sqrt_data (Zpos p) :=
match p return sqrt_data (Zpos p) with
| xH => c_sqrt 1 1 0 _ _
| xO xH => c_sqrt 2 1 1 _ _
| xI xH => c_sqrt 3 1 2 _ _
| xO (xO p') =>
match sqrtrempos p' with
| c_sqrt _ s' r' Heq Hint =>
match Z_le_gt_dec (4 * s' + 1) (4 * r') with
| left Hle =>
c_sqrt (Zpos (xO (xO p'))) (2 * s' + 1)
(4 * r' - (4 * s' + 1)) _ _
| right Hgt => c_sqrt (Zpos (xO (xO p'))) (2 * s') (4 * r') _ _
end
end
| xO (xI p') =>
match sqrtrempos p' with
| c_sqrt _ s' r' Heq Hint =>
match Z_le_gt_dec (4 * s' + 1) (4 * r' + 2) with
| left Hle =>
c_sqrt (Zpos (xO (xI p'))) (2 * s' + 1)
(4 * r' + 2 - (4 * s' + 1)) _ _
| right Hgt =>
c_sqrt (Zpos (xO (xI p'))) (2 * s') (4 * r' + 2) _ _
end
end
| xI (xO p') =>
match sqrtrempos p' with
| c_sqrt _ s' r' Heq Hint =>
match Z_le_gt_dec (4 * s' + 1) (4 * r' + 1) with
| left Hle =>
c_sqrt (Zpos (xI (xO p'))) (2 * s' + 1)
(4 * r' + 1 - (4 * s' + 1)) _ _
| right Hgt =>
c_sqrt (Zpos (xI (xO p'))) (2 * s') (4 * r' + 1) _ _
end
end
| xI (xI p') =>
match sqrtrempos p' with
| c_sqrt _ s' r' Heq Hint =>
match Z_le_gt_dec (4 * s' + 1) (4 * r' + 3) with
| left Hle =>
c_sqrt (Zpos (xI (xI p'))) (2 * s' + 1)
(4 * r' + 3 - (4 * s' + 1)) _ _
| right Hgt =>
c_sqrt (Zpos (xI (xI p'))) (2 * s') (4 * r' + 3) _ _
end
end
end); clear sqrtrempos; repeat compute_POS;
try (try rewrite Heq; ring); try omega.
Defined.
(** Define with integer input, but with a strong (readable) specification. *)
Definition Zsqrt :
forall x:Z,
0 <= x ->
{s : Z & {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}}.
refine
(fun x =>
match
x
return
0 <= x ->
{s : Z & {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}}
with
| Zpos p =>
fun h =>
match sqrtrempos p with
| c_sqrt _ s r Heq Hint =>
existT
(fun s:Z =>
{r : Z |
Zpos p = s * s + r /\ s * s <= Zpos p < (s + 1) * (s + 1)})
s
(exist
(fun r:Z =>
Zpos p = s * s + r /\
s * s <= Zpos p < (s + 1) * (s + 1)) r _)
end
| Zneg p =>
fun h =>
False_rec
{s : Z &
{r : Z |
Zneg p = s * s + r /\ s * s <= Zneg p < (s + 1) * (s + 1)}}
(h (eq_refl Datatypes.Gt))
| Z0 =>
fun h =>
existT
(fun s:Z =>
{r : Z | 0 = s * s + r /\ s * s <= 0 < (s + 1) * (s + 1)}) 0
(exist
(fun r:Z => 0 = 0 * 0 + r /\ 0 * 0 <= 0 < (0 + 1) * (0 + 1)) 0
_)
end); try omega.
split; [ omega | rewrite Heq; ring_simplify (s*s) ((s + 1) * (s + 1)); omega ].
Defined.
(** Define a function of type Z->Z that computes the integer square root,
but only for positive numbers, and 0 for others. *)
Definition Zsqrt_plain (x:Z) : Z :=
match x with
| Zpos p =>
match Zsqrt (Zpos p) (Pos2Z.is_nonneg p) with
| existT _ s _ => s
end
| Zneg p => 0
| Z0 => 0
end.
(** A basic theorem about Zsqrt_plain *)
Theorem Zsqrt_interval :
forall n:Z,
0 <= n ->
Zsqrt_plain n * Zsqrt_plain n <= n <
(Zsqrt_plain n + 1) * (Zsqrt_plain n + 1).
Proof.
intros [|p|p] Hp.
- now compute.
- unfold Zsqrt_plain.
now destruct Zsqrt as (s & r & Heq & Hint).
- now elim Hp.
Qed.
(** Positivity *)
Theorem Zsqrt_plain_is_pos: forall n, 0 <= n -> 0 <= Zsqrt_plain n.
Proof.
intros n m; case (Zsqrt_interval n); auto with zarith.
intros H1 H2; case (Z.le_gt_cases 0 (Zsqrt_plain n)); auto.
intros H3; contradict H2; auto; apply Z.le_ngt.
apply Z.le_trans with ( 2 := H1 ).
replace ((Zsqrt_plain n + 1) * (Zsqrt_plain n + 1))
with (Zsqrt_plain n * Zsqrt_plain n + (2 * Zsqrt_plain n + 1));
auto with zarith.
ring.
Qed.
(** Direct correctness on squares. *)
Theorem Zsqrt_square_id: forall a, 0 <= a -> Zsqrt_plain (a * a) = a.
Proof.
intros a H.
generalize (Zsqrt_plain_is_pos (a * a)); auto with zarith; intros Haa.
case (Zsqrt_interval (a * a)); auto with zarith.
intros H1 H2.
case (Z.le_gt_cases a (Zsqrt_plain (a * a))); intros H3.
- Z.le_elim H3; auto.
contradict H1; auto; apply Z.lt_nge; auto with zarith.
apply Z.le_lt_trans with (a * Zsqrt_plain (a * a)); auto with zarith.
apply Z.mul_lt_mono_pos_r; auto with zarith.
- contradict H2; auto; apply Z.le_ngt; auto with zarith.
apply Z.mul_le_mono_nonneg; auto with zarith.
Qed.
(** [Zsqrt_plain] is increasing *)
Theorem Zsqrt_le:
forall p q, 0 <= p <= q -> Zsqrt_plain p <= Zsqrt_plain q.
Proof.
intros p q [H1 H2].
Z.le_elim H2; [ | subst q; auto with zarith].
case (Z.le_gt_cases (Zsqrt_plain p) (Zsqrt_plain q)); auto; intros H3.
assert (Hp: (0 <= Zsqrt_plain q)).
{ apply Zsqrt_plain_is_pos; auto with zarith. }
absurd (q <= p); auto with zarith.
apply Z.le_trans with ((Zsqrt_plain q + 1) * (Zsqrt_plain q + 1)).
case (Zsqrt_interval q); auto with zarith.
apply Z.le_trans with (Zsqrt_plain p * Zsqrt_plain p); auto with zarith.
apply Z.mul_le_mono_nonneg; auto with zarith.
case (Zsqrt_interval p); auto with zarith.
Qed.
(** Equivalence between Zsqrt_plain and [Z.sqrt] *)
Lemma Zsqrt_equiv : forall n, Zsqrt_plain n = Z.sqrt n.
Proof.
intros. destruct (Z_le_gt_dec 0 n).
symmetry. apply Z.sqrt_unique; trivial.
now apply Zsqrt_interval.
now destruct n.
Qed.
|