1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Wf_nat ZArith_base Omega Zcomplements.
Require Export Zpow_def.
Local Open Scope Z_scope.
(** * Power functions over [Z] *)
(** Nota : this file is mostly deprecated. The definition of [Z.pow]
and its usual properties are now provided by module [BinInt.Z].
Powers of 2 are also available there (see [Z.shiftl] and [Z.shiftr]).
Only remain here:
- [Zpower_nat] : a power function with a [nat] exponent
- old-style powers of two, such as [two_p]
- [Zdiv_rest] : a division + modulo when the divisor is a power of 2
*)
(** [Zpower_nat z n] is the n-th power of [z] when [n] is an unary
integer (type [nat]) and [z] a signed integer (type [Z]) *)
Definition Zpower_nat (z:Z) := nat_rect _ 1 (fun _ => Z.mul z).
Lemma Zpower_nat_0_r z : Zpower_nat z 0 = 1.
Proof. reflexivity. Qed.
Lemma Zpower_nat_succ_r n z : Zpower_nat z (S n) = z * (Zpower_nat z n).
Proof. reflexivity. Qed.
(** [Zpower_nat_is_exp] says [Zpower_nat] is a morphism for
[plus : nat->nat->nat] and [Z.mul : Z->Z->Z] *)
Lemma Zpower_nat_is_exp :
forall (n m:nat) (z:Z),
Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
Proof.
induction n.
- intros. now rewrite Zpower_nat_0_r, Z.mul_1_l.
- intros. simpl. now rewrite IHn, Z.mul_assoc.
Qed.
(** Conversions between powers of unary and binary integers *)
Lemma Zpower_pos_nat (z : Z) (p : positive) :
Z.pow_pos z p = Zpower_nat z (Pos.to_nat p).
Proof.
apply Pos2Nat.inj_iter.
Qed.
Lemma Zpower_nat_Z (z : Z) (n : nat) :
Zpower_nat z n = z ^ (Z.of_nat n).
Proof.
induction n. trivial.
rewrite Zpower_nat_succ_r, Nat2Z.inj_succ, Z.pow_succ_r.
now f_equal.
apply Nat2Z.is_nonneg.
Qed.
Theorem Zpower_nat_Zpower z n : 0 <= n ->
z^n = Zpower_nat z (Z.abs_nat n).
Proof.
intros. now rewrite Zpower_nat_Z, Zabs2Nat.id_abs, Z.abs_eq.
Qed.
(** The function [(Z.pow_pos z)] is a morphism
for [Pos.add : positive->positive->positive] and [Z.mul : Z->Z->Z] *)
Lemma Zpower_pos_is_exp (n m : positive)(z:Z) :
Z.pow_pos z (n + m) = Z.pow_pos z n * Z.pow_pos z m.
Proof.
now apply (Z.pow_add_r z (Zpos n) (Zpos m)).
Qed.
Hint Immediate Zpower_nat_is_exp Zpower_pos_is_exp : zarith.
Hint Unfold Z.pow_pos Zpower_nat: zarith.
Theorem Zpower_exp x n m :
n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
Proof.
Z.swap_greater. apply Z.pow_add_r.
Qed.
Section Powers_of_2.
(** * Powers of 2 *)
(** For the powers of two, that will be widely used, a more direct
calculus is possible. [shift n m] computes [2^n * m], i.e.
[m] shifted by [n] positions *)
Definition shift_nat (n:nat) (z:positive) := nat_rect _ z (fun _ => xO) n.
Definition shift_pos (n z:positive) := Pos.iter xO z n.
Definition shift (n:Z) (z:positive) :=
match n with
| Z0 => z
| Zpos p => Pos.iter xO z p
| Zneg p => z
end.
Definition two_power_nat (n:nat) := Zpos (shift_nat n 1).
Definition two_power_pos (x:positive) := Zpos (shift_pos x 1).
Definition two_p (x:Z) :=
match x with
| Z0 => 1
| Zpos y => two_power_pos y
| Zneg y => 0
end.
(** Equivalence with notions defined in BinInt *)
Lemma shift_nat_equiv n p : shift_nat n p = Pos.shiftl_nat p n.
Proof. reflexivity. Qed.
Lemma shift_pos_equiv n p : shift_pos n p = Pos.shiftl p (Npos n).
Proof. reflexivity. Qed.
Lemma shift_equiv n p : 0<=n -> Zpos (shift n p) = Z.shiftl (Zpos p) n.
Proof.
destruct n.
- trivial.
- simpl; intros. now apply Pos.iter_swap_gen.
- now destruct 1.
Qed.
Lemma two_power_nat_equiv n : two_power_nat n = 2 ^ (Z.of_nat n).
Proof.
induction n.
- trivial.
- now rewrite Nat2Z.inj_succ, Z.pow_succ_r, <- IHn by apply Nat2Z.is_nonneg.
Qed.
Lemma two_power_pos_equiv p : two_power_pos p = 2 ^ Zpos p.
Proof.
now apply Pos.iter_swap_gen.
Qed.
Lemma two_p_equiv x : two_p x = 2 ^ x.
Proof.
destruct x; trivial. apply two_power_pos_equiv.
Qed.
(** Properties of these old versions of powers of two *)
Lemma two_power_nat_S n : two_power_nat (S n) = 2 * two_power_nat n.
Proof. reflexivity. Qed.
Lemma shift_nat_plus n m x :
shift_nat (n + m) x = shift_nat n (shift_nat m x).
Proof.
induction n; simpl; now f_equal.
Qed.
Theorem shift_nat_correct n x :
Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x.
Proof.
induction n.
- trivial.
- now rewrite Zpower_nat_succ_r, <- Z.mul_assoc, <- IHn.
Qed.
Theorem two_power_nat_correct n : two_power_nat n = Zpower_nat 2 n.
Proof.
now rewrite two_power_nat_equiv, Zpower_nat_Z.
Qed.
Lemma shift_pos_nat p x : shift_pos p x = shift_nat (Pos.to_nat p) x.
Proof.
apply Pos2Nat.inj_iter.
Qed.
Lemma two_power_pos_nat p : two_power_pos p = two_power_nat (Pos.to_nat p).
Proof.
unfold two_power_pos. now rewrite shift_pos_nat.
Qed.
Theorem shift_pos_correct p x :
Zpos (shift_pos p x) = Z.pow_pos 2 p * Zpos x.
Proof.
now rewrite shift_pos_nat, Zpower_pos_nat, shift_nat_correct.
Qed.
Theorem two_power_pos_correct x : two_power_pos x = Z.pow_pos 2 x.
Proof.
apply two_power_pos_equiv.
Qed.
Theorem two_power_pos_is_exp x y :
two_power_pos (x + y) = two_power_pos x * two_power_pos y.
Proof.
rewrite 3 two_power_pos_equiv. now apply (Z.pow_add_r 2 (Zpos x) (Zpos y)).
Qed.
Lemma two_p_correct x : two_p x = 2^x.
Proof (two_p_equiv x).
Theorem two_p_is_exp x y :
0 <= x -> 0 <= y -> two_p (x + y) = two_p x * two_p y.
Proof.
rewrite !two_p_equiv. apply Z.pow_add_r.
Qed.
Lemma two_p_gt_ZERO x : 0 <= x -> two_p x > 0.
Proof.
Z.swap_greater. rewrite two_p_equiv. now apply Z.pow_pos_nonneg.
Qed.
Lemma two_p_S x : 0 <= x -> two_p (Z.succ x) = 2 * two_p x.
Proof.
rewrite !two_p_equiv. now apply Z.pow_succ_r.
Qed.
Lemma two_p_pred x : 0 <= x -> two_p (Z.pred x) < two_p x.
Proof.
rewrite !two_p_equiv. intros. apply Z.pow_lt_mono_r; auto with zarith.
Qed.
End Powers_of_2.
Hint Resolve two_p_gt_ZERO: zarith.
Hint Immediate two_p_pred two_p_S: zarith.
Section power_div_with_rest.
(** * Division by a power of two. *)
(** To [x:Z] and [p:positive], [q],[r] are associated such that
[x = 2^p.q + r] and [0 <= r < 2^p] *)
(** Invariant: [d*q + r = d'*q + r /\ d' = 2*d /\ 0<=r<d /\ 0<=r'<d'] *)
Definition Zdiv_rest_aux (qrd:Z * Z * Z) :=
let '(q,r,d) := qrd in
(match q with
| Z0 => (0, r)
| Zpos xH => (0, d + r)
| Zpos (xI n) => (Zpos n, d + r)
| Zpos (xO n) => (Zpos n, r)
| Zneg xH => (-1, d + r)
| Zneg (xI n) => (Zneg n - 1, d + r)
| Zneg (xO n) => (Zneg n, r)
end, 2 * d).
Definition Zdiv_rest (x:Z) (p:positive) :=
let (qr, d) := Pos.iter Zdiv_rest_aux (x, 0, 1) p in qr.
Lemma Zdiv_rest_correct1 (x:Z) (p:positive) :
let (_, d) := Pos.iter Zdiv_rest_aux (x, 0, 1) p in
d = two_power_pos p.
Proof.
rewrite Pos2Nat.inj_iter, two_power_pos_nat.
induction (Pos.to_nat p); simpl; trivial.
destruct (nat_rect _ _ _ _) as ((q,r),d).
unfold Zdiv_rest_aux. rewrite two_power_nat_S; now f_equal.
Qed.
Lemma Zdiv_rest_correct2 (x:Z) (p:positive) :
let '(q,r,d) := Pos.iter Zdiv_rest_aux (x, 0, 1) p in
x = q * d + r /\ 0 <= r < d.
Proof.
apply Pos.iter_invariant; [|omega].
intros ((q,r),d) (H,H'). unfold Zdiv_rest_aux.
destruct q as [ |[q|q| ]|[q|q| ]]; try omega.
- rewrite Pos2Z.inj_xI, Z.mul_add_distr_r in H.
rewrite Z.mul_shuffle3, Z.mul_assoc. omega.
- rewrite Pos2Z.inj_xO in H.
rewrite Z.mul_shuffle3, Z.mul_assoc. omega.
- rewrite Pos2Z.neg_xI, Z.mul_sub_distr_r in H.
rewrite Z.mul_sub_distr_r, Z.mul_shuffle3, Z.mul_assoc. omega.
- rewrite Pos2Z.neg_xO in H.
rewrite Z.mul_shuffle3, Z.mul_assoc. omega.
Qed.
(** Old-style rich specification by proof of existence *)
Inductive Zdiv_rest_proofs (x:Z) (p:positive) : Set :=
Zdiv_rest_proof :
forall q r:Z,
x = q * two_power_pos p + r ->
0 <= r -> r < two_power_pos p -> Zdiv_rest_proofs x p.
Lemma Zdiv_rest_correct (x:Z) (p:positive) : Zdiv_rest_proofs x p.
Proof.
generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
destruct (Pos.iter Zdiv_rest_aux (x, 0, 1) p) as ((q,r),d).
intros (H1,(H2,H3)) ->. now exists q r.
Qed.
(** Direct correctness of [Zdiv_rest] *)
Lemma Zdiv_rest_ok x p :
let (q,r) := Zdiv_rest x p in
x = q * 2^(Zpos p) + r /\ 0 <= r < 2^(Zpos p).
Proof.
unfold Zdiv_rest.
generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
destruct (Pos.iter Zdiv_rest_aux (x, 0, 1) p) as ((q,r),d).
intros H ->. now rewrite two_power_pos_equiv in H.
Qed.
(** Equivalence with [Z.shiftr] *)
Lemma Zdiv_rest_shiftr x p :
fst (Zdiv_rest x p) = Z.shiftr x (Zpos p).
Proof.
generalize (Zdiv_rest_ok x p). destruct (Zdiv_rest x p) as (q,r).
intros (H,H'). simpl.
rewrite Z.shiftr_div_pow2 by easy.
apply Z.div_unique_pos with r; trivial. now rewrite Z.mul_comm.
Qed.
End power_div_with_rest.
|