blob: 620d6324f75b02d3a129655593da135526839a82 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
Require Import ZArith_base.
Require Import Ring_theory.
Open Local Scope Z_scope.
(** [Zpower_pos z n] is the n-th power of [z] when [n] is an binary
integer (type [positive]) and [z] a signed integer (type [Z]) *)
Definition Zpower_pos (z:Z) (n:positive) := iter_pos n Z (fun x:Z => z * x) 1.
Definition Zpower (x y:Z) :=
match y with
| Zpos p => Zpower_pos x p
| Z0 => 1
| Zneg p => 0
end.
Lemma Zpower_theory : power_theory 1 Zmult (eq (A:=Z)) Z_of_N Zpower.
Proof.
constructor. intros.
destruct n;simpl;trivial.
unfold Zpower_pos.
assert (forall k, iter_pos p Z (fun x : Z => r * x) k = pow_pos Zmult r p*k).
induction p;simpl;intros;repeat rewrite IHp;trivial;
repeat rewrite Zmult_assoc;trivial.
rewrite H;rewrite Zmult_1_r;trivial.
Qed.
|