1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *)
Require Import BinPos.
Require Import BinInt.
Require Import Arith.
Require Import Decidable.
Require Import Zcompare.
Open Local Scope Z_scope.
Implicit Types x y z : Z.
(**********************************************************************)
(** Properties of the order relations on binary integers *)
(** Trichotomy *)
Theorem Ztrichotomy_inf : forall n m:Z, {n < m} + {n = m} + {n > m}.
Proof.
unfold Zgt, Zlt in |- *; intros m n; assert (H := refl_equal (m ?= n)).
set (x := m ?= n) in H at 2 |- *.
destruct x;
[ left; right; rewrite Zcompare_Eq_eq with (1 := H) | left; left | right ];
reflexivity.
Qed.
Theorem Ztrichotomy : forall n m:Z, n < m \/ n = m \/ n > m.
Proof.
intros m n; destruct (Ztrichotomy_inf m n) as [[Hlt| Heq]| Hgt];
[ left | right; left | right; right ]; assumption.
Qed.
(**********************************************************************)
(** Decidability of equality and order on Z *)
Theorem dec_eq : forall n m:Z, decidable (n = m).
Proof.
intros x y; unfold decidable in |- *; elim (Zcompare_Eq_iff_eq x y);
intros H1 H2; elim (Dcompare (x ?= y));
[ tauto
| intros H3; right; unfold not in |- *; intros H4; elim H3; rewrite (H2 H4);
intros H5; discriminate H5 ].
Qed.
Theorem dec_Zne : forall n m:Z, decidable (Zne n m).
Proof.
intros x y; unfold decidable, Zne in |- *; elim (Zcompare_Eq_iff_eq x y).
intros H1 H2; elim (Dcompare (x ?= y));
[ right; rewrite H1; auto
| left; unfold not in |- *; intro; absurd ((x ?= y) = Eq);
[ elim H; intros HR; rewrite HR; discriminate | auto ] ].
Qed.
Theorem dec_Zle : forall n m:Z, decidable (n <= m).
Proof.
intros x y; unfold decidable, Zle in |- *; elim (x ?= y);
[ left; discriminate
| left; discriminate
| right; unfold not in |- *; intros H; apply H; trivial with arith ].
Qed.
Theorem dec_Zgt : forall n m:Z, decidable (n > m).
Proof.
intros x y; unfold decidable, Zgt in |- *; elim (x ?= y);
[ right; discriminate | right; discriminate | auto with arith ].
Qed.
Theorem dec_Zge : forall n m:Z, decidable (n >= m).
Proof.
intros x y; unfold decidable, Zge in |- *; elim (x ?= y);
[ left; discriminate
| right; unfold not in |- *; intros H; apply H; trivial with arith
| left; discriminate ].
Qed.
Theorem dec_Zlt : forall n m:Z, decidable (n < m).
Proof.
intros x y; unfold decidable, Zlt in |- *; elim (x ?= y);
[ right; discriminate | auto with arith | right; discriminate ].
Qed.
Theorem not_Zeq : forall n m:Z, n <> m -> n < m \/ m < n.
Proof.
intros x y; elim (Dcompare (x ?= y));
[ intros H1 H2; absurd (x = y);
[ assumption | elim (Zcompare_Eq_iff_eq x y); auto with arith ]
| unfold Zlt in |- *; intros H; elim H; intros H1;
[ auto with arith
| right; elim (Zcompare_Gt_Lt_antisym x y); auto with arith ] ].
Qed.
(** Relating strict and large orders *)
Lemma Zgt_lt : forall n m:Z, n > m -> m < n.
Proof.
unfold Zgt, Zlt in |- *; intros m n H; elim (Zcompare_Gt_Lt_antisym m n);
auto with arith.
Qed.
Lemma Zlt_gt : forall n m:Z, n < m -> m > n.
Proof.
unfold Zgt, Zlt in |- *; intros m n H; elim (Zcompare_Gt_Lt_antisym n m);
auto with arith.
Qed.
Lemma Zge_le : forall n m:Z, n >= m -> m <= n.
Proof.
intros m n; change (~ m < n -> ~ n > m) in |- *; unfold not in |- *;
intros H1 H2; apply H1; apply Zgt_lt; assumption.
Qed.
Lemma Zle_ge : forall n m:Z, n <= m -> m >= n.
Proof.
intros m n; change (~ m > n -> ~ n < m) in |- *; unfold not in |- *;
intros H1 H2; apply H1; apply Zlt_gt; assumption.
Qed.
Lemma Zle_not_gt : forall n m:Z, n <= m -> ~ n > m.
Proof.
trivial.
Qed.
Lemma Zgt_not_le : forall n m:Z, n > m -> ~ n <= m.
Proof.
intros n m H1 H2; apply H2; assumption.
Qed.
Lemma Zle_not_lt : forall n m:Z, n <= m -> ~ m < n.
Proof.
intros n m H1 H2.
assert (H3 := Zlt_gt _ _ H2).
apply Zle_not_gt with n m; assumption.
Qed.
Lemma Zlt_not_le : forall n m:Z, n < m -> ~ m <= n.
Proof.
intros n m H1 H2.
apply Zle_not_lt with m n; assumption.
Qed.
Lemma Znot_ge_lt : forall n m:Z, ~ n >= m -> n < m.
Proof.
unfold Zge, Zlt in |- *; intros x y H; apply dec_not_not;
[ exact (dec_Zlt x y) | assumption ].
Qed.
Lemma Znot_lt_ge : forall n m:Z, ~ n < m -> n >= m.
Proof.
unfold Zlt, Zge in |- *; auto with arith.
Qed.
Lemma Znot_gt_le : forall n m:Z, ~ n > m -> n <= m.
Proof.
trivial.
Qed.
Lemma Znot_le_gt : forall n m:Z, ~ n <= m -> n > m.
Proof.
unfold Zle, Zgt in |- *; intros x y H; apply dec_not_not;
[ exact (dec_Zgt x y) | assumption ].
Qed.
Lemma Zge_iff_le : forall n m:Z, n >= m <-> m <= n.
Proof.
intros x y; intros. split. intro. apply Zge_le. assumption.
intro. apply Zle_ge. assumption.
Qed.
Lemma Zgt_iff_lt : forall n m:Z, n > m <-> m < n.
Proof.
intros x y. split. intro. apply Zgt_lt. assumption.
intro. apply Zlt_gt. assumption.
Qed.
(** Reflexivity *)
Lemma Zle_refl : forall n:Z, n <= n.
Proof.
intros n; unfold Zle in |- *; rewrite (Zcompare_refl n); discriminate.
Qed.
Lemma Zeq_le : forall n m:Z, n = m -> n <= m.
Proof.
intros; rewrite H; apply Zle_refl.
Qed.
Hint Resolve Zle_refl: zarith.
(** Antisymmetry *)
Lemma Zle_antisym : forall n m:Z, n <= m -> m <= n -> n = m.
Proof.
intros n m H1 H2; destruct (Ztrichotomy n m) as [Hlt| [Heq| Hgt]].
absurd (m > n); [ apply Zle_not_gt | apply Zlt_gt ]; assumption.
assumption.
absurd (n > m); [ apply Zle_not_gt | idtac ]; assumption.
Qed.
(** Asymmetry *)
Lemma Zgt_asym : forall n m:Z, n > m -> ~ m > n.
Proof.
unfold Zgt in |- *; intros n m H; elim (Zcompare_Gt_Lt_antisym n m);
intros H1 H2; rewrite H1; [ discriminate | assumption ].
Qed.
Lemma Zlt_asym : forall n m:Z, n < m -> ~ m < n.
Proof.
intros n m H H1; assert (H2 : m > n). apply Zlt_gt; assumption.
assert (H3 : n > m). apply Zlt_gt; assumption.
apply Zgt_asym with m n; assumption.
Qed.
(** Irreflexivity *)
Lemma Zgt_irrefl : forall n:Z, ~ n > n.
Proof.
intros n H; apply (Zgt_asym n n H H).
Qed.
Lemma Zlt_irrefl : forall n:Z, ~ n < n.
Proof.
intros n H; apply (Zlt_asym n n H H).
Qed.
Lemma Zlt_not_eq : forall n m:Z, n < m -> n <> m.
Proof.
unfold not in |- *; intros x y H H0.
rewrite H0 in H.
apply (Zlt_irrefl _ H).
Qed.
(** Large = strict or equal *)
Lemma Zlt_le_weak : forall n m:Z, n < m -> n <= m.
Proof.
intros n m Hlt; apply Znot_gt_le; apply Zgt_asym; apply Zlt_gt; assumption.
Qed.
Lemma Zle_lt_or_eq : forall n m:Z, n <= m -> n < m \/ n = m.
Proof.
intros n m H; destruct (Ztrichotomy n m) as [Hlt| [Heq| Hgt]];
[ left; assumption
| right; assumption
| absurd (n > m); [ apply Zle_not_gt | idtac ]; assumption ].
Qed.
(** Dichotomy *)
Lemma Zle_or_lt : forall n m:Z, n <= m \/ m < n.
Proof.
intros n m; destruct (Ztrichotomy n m) as [Hlt| [Heq| Hgt]];
[ left; apply Znot_gt_le; intro Hgt; assert (Hgt' := Zlt_gt _ _ Hlt);
apply Zgt_asym with m n; assumption
| left; rewrite Heq; apply Zle_refl
| right; apply Zgt_lt; assumption ].
Qed.
(** Transitivity of strict orders *)
Lemma Zgt_trans : forall n m p:Z, n > m -> m > p -> n > p.
Proof.
exact Zcompare_Gt_trans.
Qed.
Lemma Zlt_trans : forall n m p:Z, n < m -> m < p -> n < p.
Proof.
intros n m p H1 H2; apply Zgt_lt; apply Zgt_trans with (m := m); apply Zlt_gt;
assumption.
Qed.
(** Mixed transitivity *)
Lemma Zle_gt_trans : forall n m p:Z, m <= n -> m > p -> n > p.
Proof.
intros n m p H1 H2; destruct (Zle_lt_or_eq m n H1) as [Hlt| Heq];
[ apply Zgt_trans with m; [ apply Zlt_gt; assumption | assumption ]
| rewrite <- Heq; assumption ].
Qed.
Lemma Zgt_le_trans : forall n m p:Z, n > m -> p <= m -> n > p.
Proof.
intros n m p H1 H2; destruct (Zle_lt_or_eq p m H2) as [Hlt| Heq];
[ apply Zgt_trans with m; [ assumption | apply Zlt_gt; assumption ]
| rewrite Heq; assumption ].
Qed.
Lemma Zlt_le_trans : forall n m p:Z, n < m -> m <= p -> n < p.
intros n m p H1 H2; apply Zgt_lt; apply Zle_gt_trans with (m := m);
[ assumption | apply Zlt_gt; assumption ].
Qed.
Lemma Zle_lt_trans : forall n m p:Z, n <= m -> m < p -> n < p.
Proof.
intros n m p H1 H2; apply Zgt_lt; apply Zgt_le_trans with (m := m);
[ apply Zlt_gt; assumption | assumption ].
Qed.
(** Transitivity of large orders *)
Lemma Zle_trans : forall n m p:Z, n <= m -> m <= p -> n <= p.
Proof.
intros n m p H1 H2; apply Znot_gt_le.
intro Hgt; apply Zle_not_gt with n m. assumption.
exact (Zgt_le_trans n p m Hgt H2).
Qed.
Lemma Zge_trans : forall n m p:Z, n >= m -> m >= p -> n >= p.
Proof.
intros n m p H1 H2.
apply Zle_ge.
apply Zle_trans with m; apply Zge_le; trivial.
Qed.
Hint Resolve Zle_trans: zarith.
(** Compatibility of successor wrt to order *)
Lemma Zsucc_le_compat : forall n m:Z, m <= n -> Zsucc m <= Zsucc n.
Proof.
unfold Zle, not in |- *; intros m n H1 H2; apply H1;
rewrite <- (Zcompare_plus_compat n m 1); do 2 rewrite (Zplus_comm 1);
exact H2.
Qed.
Lemma Zsucc_gt_compat : forall n m:Z, m > n -> Zsucc m > Zsucc n.
Proof.
unfold Zgt in |- *; intros n m H; rewrite Zcompare_succ_compat;
auto with arith.
Qed.
Lemma Zsucc_lt_compat : forall n m:Z, n < m -> Zsucc n < Zsucc m.
Proof.
intros n m H; apply Zgt_lt; apply Zsucc_gt_compat; apply Zlt_gt; assumption.
Qed.
Hint Resolve Zsucc_le_compat: zarith.
(** Simplification of successor wrt to order *)
Lemma Zsucc_gt_reg : forall n m:Z, Zsucc m > Zsucc n -> m > n.
Proof.
unfold Zsucc, Zgt in |- *; intros n p;
do 2 rewrite (fun m:Z => Zplus_comm m 1);
rewrite (Zcompare_plus_compat p n 1); trivial with arith.
Qed.
Lemma Zsucc_le_reg : forall n m:Z, Zsucc m <= Zsucc n -> m <= n.
Proof.
unfold Zle, not in |- *; intros m n H1 H2; apply H1; unfold Zsucc in |- *;
do 2 rewrite <- (Zplus_comm 1); rewrite (Zcompare_plus_compat n m 1);
assumption.
Qed.
Lemma Zsucc_lt_reg : forall n m:Z, Zsucc n < Zsucc m -> n < m.
Proof.
intros n m H; apply Zgt_lt; apply Zsucc_gt_reg; apply Zlt_gt; assumption.
Qed.
(** Compatibility of addition wrt to order *)
Lemma Zplus_gt_compat_l : forall n m p:Z, n > m -> p + n > p + m.
Proof.
unfold Zgt in |- *; intros n m p H; rewrite (Zcompare_plus_compat n m p);
assumption.
Qed.
Lemma Zplus_gt_compat_r : forall n m p:Z, n > m -> n + p > m + p.
Proof.
intros n m p H; rewrite (Zplus_comm n p); rewrite (Zplus_comm m p);
apply Zplus_gt_compat_l; trivial.
Qed.
Lemma Zplus_le_compat_l : forall n m p:Z, n <= m -> p + n <= p + m.
Proof.
intros n m p; unfold Zle, not in |- *; intros H1 H2; apply H1;
rewrite <- (Zcompare_plus_compat n m p); assumption.
Qed.
Lemma Zplus_le_compat_r : forall n m p:Z, n <= m -> n + p <= m + p.
Proof.
intros a b c; do 2 rewrite (fun n:Z => Zplus_comm n c);
exact (Zplus_le_compat_l a b c).
Qed.
Lemma Zplus_lt_compat_l : forall n m p:Z, n < m -> p + n < p + m.
Proof.
unfold Zlt in |- *; intros n m p; rewrite Zcompare_plus_compat;
trivial with arith.
Qed.
Lemma Zplus_lt_compat_r : forall n m p:Z, n < m -> n + p < m + p.
Proof.
intros n m p H; rewrite (Zplus_comm n p); rewrite (Zplus_comm m p);
apply Zplus_lt_compat_l; trivial.
Qed.
Lemma Zplus_lt_le_compat : forall n m p q:Z, n < m -> p <= q -> n + p < m + q.
Proof.
intros a b c d H0 H1.
apply Zlt_le_trans with (b + c).
apply Zplus_lt_compat_r; trivial.
apply Zplus_le_compat_l; trivial.
Qed.
Lemma Zplus_le_lt_compat : forall n m p q:Z, n <= m -> p < q -> n + p < m + q.
Proof.
intros a b c d H0 H1.
apply Zle_lt_trans with (b + c).
apply Zplus_le_compat_r; trivial.
apply Zplus_lt_compat_l; trivial.
Qed.
Lemma Zplus_le_compat : forall n m p q:Z, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q; intros H1 H2; apply Zle_trans with (m := n + q);
[ apply Zplus_le_compat_l; assumption
| apply Zplus_le_compat_r; assumption ].
Qed.
Lemma Zplus_lt_compat : forall n m p q:Z, n < m -> p < q -> n + p < m + q.
intros; apply Zplus_le_lt_compat. apply Zlt_le_weak; assumption. assumption.
Qed.
(** Compatibility of addition wrt to being positive *)
Lemma Zplus_le_0_compat : forall n m:Z, 0 <= n -> 0 <= m -> 0 <= n + m.
Proof.
intros x y H1 H2; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat; assumption.
Qed.
(** Simplification of addition wrt to order *)
Lemma Zplus_gt_reg_l : forall n m p:Z, p + n > p + m -> n > m.
Proof.
unfold Zgt in |- *; intros n m p H; rewrite <- (Zcompare_plus_compat n m p);
assumption.
Qed.
Lemma Zplus_gt_reg_r : forall n m p:Z, n + p > m + p -> n > m.
Proof.
intros n m p H; apply Zplus_gt_reg_l with p.
rewrite (Zplus_comm p n); rewrite (Zplus_comm p m); trivial.
Qed.
Lemma Zplus_le_reg_l : forall n m p:Z, p + n <= p + m -> n <= m.
Proof.
intros n m p; unfold Zle, not in |- *; intros H1 H2; apply H1;
rewrite (Zcompare_plus_compat n m p); assumption.
Qed.
Lemma Zplus_le_reg_r : forall n m p:Z, n + p <= m + p -> n <= m.
Proof.
intros n m p H; apply Zplus_le_reg_l with p.
rewrite (Zplus_comm p n); rewrite (Zplus_comm p m); trivial.
Qed.
Lemma Zplus_lt_reg_l : forall n m p:Z, p + n < p + m -> n < m.
Proof.
unfold Zlt in |- *; intros n m p; rewrite Zcompare_plus_compat;
trivial with arith.
Qed.
Lemma Zplus_lt_reg_r : forall n m p:Z, n + p < m + p -> n < m.
Proof.
intros n m p H; apply Zplus_lt_reg_l with p.
rewrite (Zplus_comm p n); rewrite (Zplus_comm p m); trivial.
Qed.
(** Special base instances of order *)
Lemma Zgt_succ : forall n:Z, Zsucc n > n.
Proof.
exact Zcompare_succ_Gt.
Qed.
Lemma Znot_le_succ : forall n:Z, ~ Zsucc n <= n.
Proof.
intros n; apply Zgt_not_le; apply Zgt_succ.
Qed.
Lemma Zlt_succ : forall n:Z, n < Zsucc n.
Proof.
intro n; apply Zgt_lt; apply Zgt_succ.
Qed.
Lemma Zlt_pred : forall n:Z, Zpred n < n.
Proof.
intros n; apply Zsucc_lt_reg; rewrite <- Zsucc_pred; apply Zlt_succ.
Qed.
(** Relating strict and large order using successor or predecessor *)
Lemma Zgt_le_succ : forall n m:Z, m > n -> Zsucc n <= m.
Proof.
unfold Zgt, Zle in |- *; intros n p H; elim (Zcompare_Gt_not_Lt p n);
intros H1 H2; unfold not in |- *; intros H3; unfold not in H1;
apply H1;
[ assumption
| elim (Zcompare_Gt_Lt_antisym (n + 1) p); intros H4 H5; apply H4; exact H3 ].
Qed.
Lemma Zlt_gt_succ : forall n m:Z, n <= m -> Zsucc m > n.
Proof.
intros n p H; apply Zgt_le_trans with p.
apply Zgt_succ.
assumption.
Qed.
Lemma Zle_lt_succ : forall n m:Z, n <= m -> n < Zsucc m.
Proof.
intros n m H; apply Zgt_lt; apply Zlt_gt_succ; assumption.
Qed.
Lemma Zlt_le_succ : forall n m:Z, n < m -> Zsucc n <= m.
Proof.
intros n p H; apply Zgt_le_succ; apply Zlt_gt; assumption.
Qed.
Lemma Zgt_succ_le : forall n m:Z, Zsucc m > n -> n <= m.
Proof.
intros n p H; apply Zsucc_le_reg; apply Zgt_le_succ; assumption.
Qed.
Lemma Zlt_succ_le : forall n m:Z, n < Zsucc m -> n <= m.
Proof.
intros n m H; apply Zgt_succ_le; apply Zlt_gt; assumption.
Qed.
Lemma Zlt_succ_gt : forall n m:Z, Zsucc n <= m -> m > n.
Proof.
intros n m H; apply Zle_gt_trans with (m := Zsucc n);
[ assumption | apply Zgt_succ ].
Qed.
(** Weakening order *)
Lemma Zle_succ : forall n:Z, n <= Zsucc n.
Proof.
intros n; apply Zgt_succ_le; apply Zgt_trans with (m := Zsucc n);
apply Zgt_succ.
Qed.
Hint Resolve Zle_succ: zarith.
Lemma Zle_pred : forall n:Z, Zpred n <= n.
Proof.
intros n; pattern n at 2 in |- *; rewrite Zsucc_pred; apply Zle_succ.
Qed.
Lemma Zlt_lt_succ : forall n m:Z, n < m -> n < Zsucc m.
intros n m H; apply Zgt_lt; apply Zgt_trans with (m := m);
[ apply Zgt_succ | apply Zlt_gt; assumption ].
Qed.
Lemma Zle_le_succ : forall n m:Z, n <= m -> n <= Zsucc m.
Proof.
intros x y H.
apply Zle_trans with y; trivial with zarith.
Qed.
Lemma Zle_succ_le : forall n m:Z, Zsucc n <= m -> n <= m.
Proof.
intros n m H; apply Zle_trans with (m := Zsucc n);
[ apply Zle_succ | assumption ].
Qed.
Hint Resolve Zle_le_succ: zarith.
(** Relating order wrt successor and order wrt predecessor *)
Lemma Zgt_succ_pred : forall n m:Z, m > Zsucc n -> Zpred m > n.
Proof.
unfold Zgt, Zsucc, Zpred in |- *; intros n p H;
rewrite <- (fun x y => Zcompare_plus_compat x y 1);
rewrite (Zplus_comm p); rewrite Zplus_assoc;
rewrite (fun x => Zplus_comm x n); simpl in |- *;
assumption.
Qed.
Lemma Zlt_succ_pred : forall n m:Z, Zsucc n < m -> n < Zpred m.
Proof.
intros n p H; apply Zsucc_lt_reg; rewrite <- Zsucc_pred; assumption.
Qed.
(** Relating strict order and large order on positive *)
Lemma Zlt_0_le_0_pred : forall n:Z, 0 < n -> 0 <= Zpred n.
intros x H.
rewrite (Zsucc_pred x) in H.
apply Zgt_succ_le.
apply Zlt_gt.
assumption.
Qed.
Lemma Zgt_0_le_0_pred : forall n:Z, n > 0 -> 0 <= Zpred n.
intros; apply Zlt_0_le_0_pred; apply Zgt_lt. assumption.
Qed.
(** Special cases of ordered integers *)
Lemma Zlt_0_1 : 0 < 1.
Proof.
change (0 < Zsucc 0) in |- *. apply Zlt_succ.
Qed.
Lemma Zle_0_1 : 0 <= 1.
Proof.
change (0 <= Zsucc 0) in |- *. apply Zle_succ.
Qed.
Lemma Zle_neg_pos : forall p q:positive, Zneg p <= Zpos q.
Proof.
intros p; red in |- *; simpl in |- *; red in |- *; intros H; discriminate.
Qed.
Lemma Zgt_pos_0 : forall p:positive, Zpos p > 0.
unfold Zgt in |- *; trivial.
Qed.
(* weaker but useful (in [Zpower] for instance) *)
Lemma Zle_0_pos : forall p:positive, 0 <= Zpos p.
intro; unfold Zle in |- *; discriminate.
Qed.
Lemma Zlt_neg_0 : forall p:positive, Zneg p < 0.
unfold Zlt in |- *; trivial.
Qed.
Lemma Zle_0_nat : forall n:nat, 0 <= Z_of_nat n.
simple induction n; simpl in |- *; intros;
[ apply Zle_refl | unfold Zle in |- *; simpl in |- *; discriminate ].
Qed.
Hint Immediate Zeq_le: zarith.
(** Transitivity using successor *)
Lemma Zge_trans_succ : forall n m p:Z, Zsucc n > m -> m > p -> n > p.
Proof.
intros n m p H1 H2; apply Zle_gt_trans with (m := m);
[ apply Zgt_succ_le; assumption | assumption ].
Qed.
(** Derived lemma *)
Lemma Zgt_succ_gt_or_eq : forall n m:Z, Zsucc n > m -> n > m \/ m = n.
Proof.
intros n m H.
assert (Hle : m <= n).
apply Zgt_succ_le; assumption.
destruct (Zle_lt_or_eq _ _ Hle) as [Hlt| Heq].
left; apply Zlt_gt; assumption.
right; assumption.
Qed.
(** Compatibility of multiplication by a positive wrt to order *)
Lemma Zmult_le_compat_r : forall n m p:Z, n <= m -> 0 <= p -> n * p <= m * p.
Proof.
intros a b c H H0; destruct c.
do 2 rewrite Zmult_0_r; assumption.
rewrite (Zmult_comm a); rewrite (Zmult_comm b).
unfold Zle in |- *; rewrite Zcompare_mult_compat; assumption.
unfold Zle in H0; contradiction H0; reflexivity.
Qed.
Lemma Zmult_le_compat_l : forall n m p:Z, n <= m -> 0 <= p -> p * n <= p * m.
Proof.
intros a b c H1 H2; rewrite (Zmult_comm c a); rewrite (Zmult_comm c b).
apply Zmult_le_compat_r; trivial.
Qed.
Lemma Zmult_lt_compat_r : forall n m p:Z, 0 < p -> n < m -> n * p < m * p.
Proof.
intros x y z H H0; destruct z.
contradiction (Zlt_irrefl 0).
rewrite (Zmult_comm x); rewrite (Zmult_comm y).
unfold Zlt in |- *; rewrite Zcompare_mult_compat; assumption.
discriminate H.
Qed.
Lemma Zmult_gt_compat_r : forall n m p:Z, p > 0 -> n > m -> n * p > m * p.
Proof.
intros x y z; intros; apply Zlt_gt; apply Zmult_lt_compat_r; apply Zgt_lt;
assumption.
Qed.
Lemma Zmult_gt_0_lt_compat_r :
forall n m p:Z, p > 0 -> n < m -> n * p < m * p.
Proof.
intros x y z; intros; apply Zmult_lt_compat_r;
[ apply Zgt_lt; assumption | assumption ].
Qed.
Lemma Zmult_gt_0_le_compat_r :
forall n m p:Z, p > 0 -> n <= m -> n * p <= m * p.
Proof.
intros x y z Hz Hxy.
elim (Zle_lt_or_eq x y Hxy).
intros; apply Zlt_le_weak.
apply Zmult_gt_0_lt_compat_r; trivial.
intros; apply Zeq_le.
rewrite H; trivial.
Qed.
Lemma Zmult_lt_0_le_compat_r :
forall n m p:Z, 0 < p -> n <= m -> n * p <= m * p.
Proof.
intros x y z; intros; apply Zmult_gt_0_le_compat_r; try apply Zlt_gt;
assumption.
Qed.
Lemma Zmult_gt_0_lt_compat_l :
forall n m p:Z, p > 0 -> n < m -> p * n < p * m.
Proof.
intros x y z; intros.
rewrite (Zmult_comm z x); rewrite (Zmult_comm z y);
apply Zmult_gt_0_lt_compat_r; assumption.
Qed.
Lemma Zmult_lt_compat_l : forall n m p:Z, 0 < p -> n < m -> p * n < p * m.
Proof.
intros x y z; intros.
rewrite (Zmult_comm z x); rewrite (Zmult_comm z y);
apply Zmult_gt_0_lt_compat_r; try apply Zlt_gt; assumption.
Qed.
Lemma Zmult_gt_compat_l : forall n m p:Z, p > 0 -> n > m -> p * n > p * m.
Proof.
intros x y z; intros; rewrite (Zmult_comm z x); rewrite (Zmult_comm z y);
apply Zmult_gt_compat_r; assumption.
Qed.
Lemma Zmult_ge_compat_r : forall n m p:Z, n >= m -> p >= 0 -> n * p >= m * p.
Proof.
intros a b c H1 H2; apply Zle_ge.
apply Zmult_le_compat_r; apply Zge_le; trivial.
Qed.
Lemma Zmult_ge_compat_l : forall n m p:Z, n >= m -> p >= 0 -> p * n >= p * m.
Proof.
intros a b c H1 H2; apply Zle_ge.
apply Zmult_le_compat_l; apply Zge_le; trivial.
Qed.
Lemma Zmult_ge_compat :
forall n m p q:Z, n >= p -> m >= q -> p >= 0 -> q >= 0 -> n * m >= p * q.
Proof.
intros a b c d H0 H1 H2 H3.
apply Zge_trans with (a * d).
apply Zmult_ge_compat_l; trivial.
apply Zge_trans with c; trivial.
apply Zmult_ge_compat_r; trivial.
Qed.
Lemma Zmult_le_compat :
forall n m p q:Z, n <= p -> m <= q -> 0 <= n -> 0 <= m -> n * m <= p * q.
Proof.
intros a b c d H0 H1 H2 H3.
apply Zle_trans with (c * b).
apply Zmult_le_compat_r; assumption.
apply Zmult_le_compat_l.
assumption.
apply Zle_trans with a; assumption.
Qed.
(** Simplification of multiplication by a positive wrt to being positive *)
Lemma Zmult_gt_0_lt_reg_r : forall n m p:Z, p > 0 -> n * p < m * p -> n < m.
Proof.
intros x y z; intros; destruct z.
contradiction (Zgt_irrefl 0).
rewrite (Zmult_comm x) in H0; rewrite (Zmult_comm y) in H0.
unfold Zlt in H0; rewrite Zcompare_mult_compat in H0; assumption.
discriminate H.
Qed.
Lemma Zmult_lt_reg_r : forall n m p:Z, 0 < p -> n * p < m * p -> n < m.
Proof.
intros a b c H0 H1.
apply Zmult_gt_0_lt_reg_r with c; try apply Zlt_gt; assumption.
Qed.
Lemma Zmult_le_reg_r : forall n m p:Z, p > 0 -> n * p <= m * p -> n <= m.
Proof.
intros x y z Hz Hxy.
elim (Zle_lt_or_eq (x * z) (y * z) Hxy).
intros; apply Zlt_le_weak.
apply Zmult_gt_0_lt_reg_r with z; trivial.
intros; apply Zeq_le.
apply Zmult_reg_r with z.
intro. rewrite H0 in Hz. contradiction (Zgt_irrefl 0).
assumption.
Qed.
Lemma Zmult_lt_0_le_reg_r : forall n m p:Z, 0 < p -> n * p <= m * p -> n <= m.
intros x y z; intros; apply Zmult_le_reg_r with z.
try apply Zlt_gt; assumption.
assumption.
Qed.
Lemma Zmult_ge_reg_r : forall n m p:Z, p > 0 -> n * p >= m * p -> n >= m.
intros a b c H1 H2; apply Zle_ge; apply Zmult_le_reg_r with c; trivial.
apply Zge_le; trivial.
Qed.
Lemma Zmult_gt_reg_r : forall n m p:Z, p > 0 -> n * p > m * p -> n > m.
intros a b c H1 H2; apply Zlt_gt; apply Zmult_gt_0_lt_reg_r with c; trivial.
apply Zgt_lt; trivial.
Qed.
(** Compatibility of multiplication by a positive wrt to being positive *)
Lemma Zmult_le_0_compat : forall n m:Z, 0 <= n -> 0 <= m -> 0 <= n * m.
Proof.
intros x y; case x.
intros; rewrite Zmult_0_l; trivial.
intros p H1; unfold Zle in |- *.
pattern 0 at 2 in |- *; rewrite <- (Zmult_0_r (Zpos p)).
rewrite Zcompare_mult_compat; trivial.
intros p H1 H2; absurd (0 > Zneg p); trivial.
unfold Zgt in |- *; simpl in |- *; auto with zarith.
Qed.
Lemma Zmult_gt_0_compat : forall n m:Z, n > 0 -> m > 0 -> n * m > 0.
Proof.
intros x y; case x.
intros H; discriminate H.
intros p H1; unfold Zgt in |- *; pattern 0 at 2 in |- *;
rewrite <- (Zmult_0_r (Zpos p)).
rewrite Zcompare_mult_compat; trivial.
intros p H; discriminate H.
Qed.
Lemma Zmult_lt_0_compat : forall n m:Z, 0 < n -> 0 < m -> 0 < n * m.
intros a b apos bpos.
apply Zgt_lt.
apply Zmult_gt_0_compat; try apply Zlt_gt; assumption.
Qed.
(* For compatibility *)
Notation Zmult_lt_O_compat := Zmult_lt_0_compat (only parsing).
Lemma Zmult_gt_0_le_0_compat : forall n m:Z, n > 0 -> 0 <= m -> 0 <= m * n.
Proof.
intros x y H1 H2; apply Zmult_le_0_compat; trivial.
apply Zlt_le_weak; apply Zgt_lt; trivial.
Qed.
(** Simplification of multiplication by a positive wrt to being positive *)
Lemma Zmult_le_0_reg_r : forall n m:Z, n > 0 -> 0 <= m * n -> 0 <= m.
Proof.
intros x y; case x;
[ simpl in |- *; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H
| intros p H1; unfold Zle in |- *; rewrite Zmult_comm;
pattern 0 at 1 in |- *; rewrite <- (Zmult_0_r (Zpos p));
rewrite Zcompare_mult_compat; auto with arith
| intros p; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H ].
Qed.
Lemma Zmult_gt_0_lt_0_reg_r : forall n m:Z, n > 0 -> 0 < m * n -> 0 < m.
Proof.
intros x y; case x;
[ simpl in |- *; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H
| intros p H1; unfold Zlt in |- *; rewrite Zmult_comm;
pattern 0 at 1 in |- *; rewrite <- (Zmult_0_r (Zpos p));
rewrite Zcompare_mult_compat; auto with arith
| intros p; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H ].
Qed.
Lemma Zmult_lt_0_reg_r : forall n m:Z, 0 < n -> 0 < m * n -> 0 < m.
Proof.
intros x y; intros; eapply Zmult_gt_0_lt_0_reg_r with x; try apply Zlt_gt;
assumption.
Qed.
Lemma Zmult_gt_0_reg_l : forall n m:Z, n > 0 -> n * m > 0 -> m > 0.
Proof.
intros x y; case x.
intros H; discriminate H.
intros p H1; unfold Zgt in |- *.
pattern 0 at 1 in |- *; rewrite <- (Zmult_0_r (Zpos p)).
rewrite Zcompare_mult_compat; trivial.
intros p H; discriminate H.
Qed.
(** Simplification of square wrt order *)
Lemma Zgt_square_simpl :
forall n m:Z, n >= 0 -> n * n > m * m -> n > m.
Proof.
intros n m H0 H1.
case (dec_Zlt m n).
intro; apply Zlt_gt; trivial.
intros H2; cut (m >= n).
intros H.
elim Zgt_not_le with (1 := H1).
apply Zge_le.
apply Zmult_ge_compat; auto.
apply Znot_lt_ge; trivial.
Qed.
Lemma Zlt_square_simpl :
forall n m:Z, 0 <= n -> m * m < n * n -> m < n.
Proof.
intros x y H0 H1.
apply Zgt_lt.
apply Zgt_square_simpl; try apply Zle_ge; try apply Zlt_gt; assumption.
Qed.
(** Equivalence between inequalities *)
Lemma Zle_plus_swap : forall n m p:Z, n + p <= m <-> n <= m - p.
Proof.
intros x y z; intros. split. intro. rewrite <- (Zplus_0_r x). rewrite <- (Zplus_opp_r z).
rewrite Zplus_assoc. exact (Zplus_le_compat_r _ _ _ H).
intro. rewrite <- (Zplus_0_r y). rewrite <- (Zplus_opp_l z). rewrite Zplus_assoc.
apply Zplus_le_compat_r. assumption.
Qed.
Lemma Zlt_plus_swap : forall n m p:Z, n + p < m <-> n < m - p.
Proof.
intros x y z; intros. split. intro. unfold Zminus in |- *. rewrite Zplus_comm. rewrite <- (Zplus_0_l x).
rewrite <- (Zplus_opp_l z). rewrite Zplus_assoc_reverse. apply Zplus_lt_compat_l. rewrite Zplus_comm.
assumption.
intro. rewrite Zplus_comm. rewrite <- (Zplus_0_l y). rewrite <- (Zplus_opp_r z).
rewrite Zplus_assoc_reverse. apply Zplus_lt_compat_l. rewrite Zplus_comm. assumption.
Qed.
Lemma Zeq_plus_swap : forall n m p:Z, n + p = m <-> n = m - p.
Proof.
intros x y z; intros. split. intro. apply Zplus_minus_eq. symmetry in |- *. rewrite Zplus_comm.
assumption.
intro. rewrite H. unfold Zminus in |- *. rewrite Zplus_assoc_reverse.
rewrite Zplus_opp_l. apply Zplus_0_r.
Qed.
Lemma Zlt_minus_simpl_swap : forall n m:Z, 0 < m -> n - m < n.
Proof.
intros n m H; apply Zplus_lt_reg_l with (p := m); rewrite Zplus_minus;
pattern n at 1 in |- *; rewrite <- (Zplus_0_r n);
rewrite (Zplus_comm m n); apply Zplus_lt_compat_l;
assumption.
Qed.
Lemma Zlt_0_minus_lt : forall n m:Z, 0 < n - m -> m < n.
Proof.
intros n m H; apply Zplus_lt_reg_l with (p := - m); rewrite Zplus_opp_l;
rewrite Zplus_comm; exact H.
Qed.
(* For compatibility *)
Notation Zlt_O_minus_lt := Zlt_0_minus_lt (only parsing).
|