1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zcomplements.
Require Import Zdiv.
Require Import Wf_nat.
(** For compatibility reasons, this Open Scope isn't local as it should *)
Open Scope Z_scope.
(** This file contains some notions of number theory upon Z numbers:
- a divisibility predicate [Z.divide]
- a gcd predicate [gcd]
- Euclid algorithm [euclid]
- a relatively prime predicate [rel_prime]
- a prime predicate [prime]
- properties of the efficient [Z.gcd] function
*)
Notation Zgcd := Z.gcd (compat "8.3").
Notation Zggcd := Z.ggcd (compat "8.3").
Notation Zggcd_gcd := Z.ggcd_gcd (compat "8.3").
Notation Zggcd_correct_divisors := Z.ggcd_correct_divisors (compat "8.3").
Notation Zgcd_divide_l := Z.gcd_divide_l (compat "8.3").
Notation Zgcd_divide_r := Z.gcd_divide_r (compat "8.3").
Notation Zgcd_greatest := Z.gcd_greatest (compat "8.3").
Notation Zgcd_nonneg := Z.gcd_nonneg (compat "8.3").
Notation Zggcd_opp := Z.ggcd_opp (compat "8.3").
(** The former specialized inductive predicate [Z.divide] is now
a generic existential predicate. *)
Notation Zdivide := Z.divide (compat "8.3").
(** Its former constructor is now a pseudo-constructor. *)
Definition Zdivide_intro a b q (H:b=q*a) : Z.divide a b := ex_intro _ q H.
(** Results concerning divisibility*)
Notation Zdivide_refl := Z.divide_refl (compat "8.3").
Notation Zone_divide := Z.divide_1_l (compat "8.3").
Notation Zdivide_0 := Z.divide_0_r (compat "8.3").
Notation Zmult_divide_compat_l := Z.mul_divide_mono_l (compat "8.3").
Notation Zmult_divide_compat_r := Z.mul_divide_mono_r (compat "8.3").
Notation Zdivide_plus_r := Z.divide_add_r (compat "8.3").
Notation Zdivide_minus_l := Z.divide_sub_r (compat "8.3").
Notation Zdivide_mult_l := Z.divide_mul_l (compat "8.3").
Notation Zdivide_mult_r := Z.divide_mul_r (compat "8.3").
Notation Zdivide_factor_r := Z.divide_factor_l (compat "8.3").
Notation Zdivide_factor_l := Z.divide_factor_r (compat "8.3").
Lemma Zdivide_opp_r a b : (a | b) -> (a | - b).
Proof. apply Z.divide_opp_r. Qed.
Lemma Zdivide_opp_r_rev a b : (a | - b) -> (a | b).
Proof. apply Z.divide_opp_r. Qed.
Lemma Zdivide_opp_l a b : (a | b) -> (- a | b).
Proof. apply Z.divide_opp_l. Qed.
Lemma Zdivide_opp_l_rev a b : (- a | b) -> (a | b).
Proof. apply Z.divide_opp_l. Qed.
Theorem Zdivide_Zabs_l a b : (Z.abs a | b) -> (a | b).
Proof. apply Z.divide_abs_l. Qed.
Theorem Zdivide_Zabs_inv_l a b : (a | b) -> (Z.abs a | b).
Proof. apply Z.divide_abs_l. Qed.
Hint Resolve Z.divide_refl Z.divide_1_l Z.divide_0_r: zarith.
Hint Resolve Z.mul_divide_mono_l Z.mul_divide_mono_r: zarith.
Hint Resolve Z.divide_add_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
Zdivide_opp_l_rev Z.divide_sub_r Z.divide_mul_l Z.divide_mul_r
Z.divide_factor_l Z.divide_factor_r: zarith.
(** Auxiliary result. *)
Lemma Zmult_one x y : x >= 0 -> x * y = 1 -> x = 1.
Proof.
Z.swap_greater. apply Z.eq_mul_1_nonneg.
Qed.
(** Only [1] and [-1] divide [1]. *)
Notation Zdivide_1 := Z.divide_1_r (compat "8.3").
(** If [a] divides [b] and [b] divides [a] then [a] is [b] or [-b]. *)
Notation Zdivide_antisym := Z.divide_antisym (compat "8.3").
Notation Zdivide_trans := Z.divide_trans (compat "8.3").
(** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *)
Lemma Zdivide_bounds a b : (a | b) -> b <> 0 -> Z.abs a <= Z.abs b.
Proof.
intros H Hb.
rewrite <- Z.divide_abs_l, <- Z.divide_abs_r in H.
apply Z.abs_pos in Hb.
now apply Z.divide_pos_le.
Qed.
(** [Z.divide] can be expressed using [Z.modulo]. *)
Lemma Zmod_divide : forall a b, b<>0 -> a mod b = 0 -> (b | a).
Proof.
apply Z.mod_divide.
Qed.
Lemma Zdivide_mod : forall a b, (b | a) -> a mod b = 0.
Proof.
intros a b (c,->); apply Z_mod_mult.
Qed.
(** [Z.divide] is hence decidable *)
Lemma Zdivide_dec a b : {(a | b)} + {~ (a | b)}.
Proof.
destruct (Z.eq_dec a 0) as [Ha|Ha].
destruct (Z.eq_dec b 0) as [Hb|Hb].
left; subst; apply Z.divide_0_r.
right. subst. contradict Hb. now apply Z.divide_0_l.
destruct (Z.eq_dec (b mod a) 0).
left. now apply Z.mod_divide.
right. now rewrite <- Z.mod_divide.
Defined.
Theorem Zdivide_Zdiv_eq a b : 0 < a -> (a | b) -> b = a * (b / a).
Proof.
intros Ha H.
rewrite (Z.div_mod b a) at 1; auto with zarith.
rewrite Zdivide_mod; auto with zarith.
Qed.
Theorem Zdivide_Zdiv_eq_2 a b c :
0 < a -> (a | b) -> (c * b) / a = c * (b / a).
Proof.
intros. apply Z.divide_div_mul_exact; auto with zarith.
Qed.
Theorem Zdivide_le: forall a b : Z,
0 <= a -> 0 < b -> (a | b) -> a <= b.
Proof.
intros. now apply Z.divide_pos_le.
Qed.
Theorem Zdivide_Zdiv_lt_pos a b :
1 < a -> 0 < b -> (a | b) -> 0 < b / a < b .
Proof.
intros H1 H2 H3; split.
apply Z.mul_pos_cancel_l with a; auto with zarith.
rewrite <- Zdivide_Zdiv_eq; auto with zarith.
now apply Z.div_lt.
Qed.
Lemma Zmod_div_mod n m a:
0 < n -> 0 < m -> (n | m) -> a mod n = (a mod m) mod n.
Proof.
intros H1 H2 (p,Hp).
rewrite (Z.div_mod a m) at 1; auto with zarith.
rewrite Hp at 1.
rewrite Z.mul_shuffle0, Z.add_comm, Z.mod_add; auto with zarith.
Qed.
Lemma Zmod_divide_minus a b c:
0 < b -> a mod b = c -> (b | a - c).
Proof.
intros H H1. apply Z.mod_divide; auto with zarith.
rewrite Zminus_mod; auto with zarith.
rewrite H1. rewrite <- (Z.mod_small c b) at 1.
rewrite Z.sub_diag, Z.mod_0_l; auto with zarith.
subst. now apply Z.mod_pos_bound.
Qed.
Lemma Zdivide_mod_minus a b c:
0 <= c < b -> (b | a - c) -> a mod b = c.
Proof.
intros (H1, H2) H3.
assert (0 < b) by Z.order.
replace a with ((a - c) + c); auto with zarith.
rewrite Z.add_mod; auto with zarith.
rewrite (Zdivide_mod (a-c) b); try rewrite Z.add_0_l; auto with zarith.
rewrite Z.mod_mod; try apply Zmod_small; auto with zarith.
Qed.
(** * Greatest common divisor (gcd). *)
(** There is no unicity of the gcd; hence we define the predicate
[Zis_gcd a b g] expressing that [g] is a gcd of [a] and [b].
(We show later that the [gcd] is actually unique if we discard its sign.) *)
Inductive Zis_gcd (a b g:Z) : Prop :=
Zis_gcd_intro :
(g | a) ->
(g | b) ->
(forall x, (x | a) -> (x | b) -> (x | g)) ->
Zis_gcd a b g.
(** Trivial properties of [gcd] *)
Lemma Zis_gcd_sym : forall a b d, Zis_gcd a b d -> Zis_gcd b a d.
Proof.
induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_0 : forall a, Zis_gcd a 0 a.
Proof.
constructor; auto with zarith.
Qed.
Lemma Zis_gcd_1 : forall a, Zis_gcd a 1 1.
Proof.
constructor; auto with zarith.
Qed.
Lemma Zis_gcd_refl : forall a, Zis_gcd a a a.
Proof.
constructor; auto with zarith.
Qed.
Lemma Zis_gcd_minus : forall a b d, Zis_gcd a (- b) d -> Zis_gcd b a d.
Proof.
induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_opp : forall a b d, Zis_gcd a b d -> Zis_gcd b a (- d).
Proof.
induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_0_abs a : Zis_gcd 0 a (Z.abs a).
Proof.
apply Zabs_ind.
intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto.
intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto.
Qed.
Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.
Theorem Zis_gcd_unique: forall a b c d : Z,
Zis_gcd a b c -> Zis_gcd a b d -> c = d \/ c = (- d).
Proof.
intros a b c d [Hc1 Hc2 Hc3] [Hd1 Hd2 Hd3].
assert (c|d) by auto.
assert (d|c) by auto.
apply Z.divide_antisym; auto.
Qed.
(** * Extended Euclid algorithm. *)
(** Euclid's algorithm to compute the [gcd] mainly relies on
the following property. *)
Lemma Zis_gcd_for_euclid :
forall a b d q:Z, Zis_gcd b (a - q * b) d -> Zis_gcd a b d.
Proof.
simple induction 1; constructor; intuition.
replace a with (a - q * b + q * b). auto with zarith. ring.
Qed.
Lemma Zis_gcd_for_euclid2 :
forall b d q r:Z, Zis_gcd r b d -> Zis_gcd b (b * q + r) d.
Proof.
simple induction 1; constructor; intuition.
apply H2; auto.
replace r with (b * q + r - b * q). auto with zarith. ring.
Qed.
(** We implement the extended version of Euclid's algorithm,
i.e. the one computing Bezout's coefficients as it computes
the [gcd]. We follow the algorithm given in Knuth's
"Art of Computer Programming", vol 2, page 325. *)
Section extended_euclid_algorithm.
Variables a b : Z.
(** The specification of Euclid's algorithm is the existence of
[u], [v] and [d] such that [ua+vb=d] and [(gcd a b d)]. *)
Inductive Euclid : Set :=
Euclid_intro :
forall u v d:Z, u * a + v * b = d -> Zis_gcd a b d -> Euclid.
(** The recursive part of Euclid's algorithm uses well-founded
recursion of non-negative integers. It maintains 6 integers
[u1,u2,u3,v1,v2,v3] such that the following invariant holds:
[u1*a+u2*b=u3] and [v1*a+v2*b=v3] and [gcd(u3,v3)=gcd(a,b)].
*)
Lemma euclid_rec :
forall v3:Z,
0 <= v3 ->
forall u1 u2 u3 v1 v2:Z,
u1 * a + u2 * b = u3 ->
v1 * a + v2 * b = v3 ->
(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.
Proof.
intros v3 Hv3; generalize Hv3; pattern v3.
apply Zlt_0_rec.
clear v3 Hv3; intros.
destruct (Z_zerop x) as [Heq|Hneq].
apply Euclid_intro with (u := u1) (v := u2) (d := u3).
assumption.
apply H3.
rewrite Heq; auto with zarith.
set (q := u3 / x) in *.
assert (Hq : 0 <= u3 - q * x < x).
replace (u3 - q * x) with (u3 mod x).
apply Z_mod_lt; omega.
assert (xpos : x > 0). omega.
generalize (Z_div_mod_eq u3 x xpos).
unfold q.
intro eq; pattern u3 at 2; rewrite eq; ring.
apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)).
tauto.
replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with
(u1 * a + u2 * b - q * (v1 * a + v2 * b)).
rewrite H1; rewrite H2; trivial.
ring.
intros; apply H3.
apply Zis_gcd_for_euclid with q; assumption.
assumption.
Qed.
(** We get Euclid's algorithm by applying [euclid_rec] on
[1,0,a,0,1,b] when [b>=0] and [1,0,a,0,-1,-b] when [b<0]. *)
Lemma euclid : Euclid.
Proof.
case (Z_le_gt_dec 0 b); intro.
intros;
apply euclid_rec with
(u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := 1) (v3 := b);
auto with zarith; ring.
intros;
apply euclid_rec with
(u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := -1) (v3 := - b);
auto with zarith; try ring.
Qed.
End extended_euclid_algorithm.
Theorem Zis_gcd_uniqueness_apart_sign :
forall a b d d':Z, Zis_gcd a b d -> Zis_gcd a b d' -> d = d' \/ d = - d'.
Proof.
simple induction 1.
intros H1 H2 H3; simple induction 1; intros.
generalize (H3 d' H4 H5); intro Hd'd.
generalize (H6 d H1 H2); intro Hdd'.
exact (Z.divide_antisym d d' Hdd' Hd'd).
Qed.
(** * Bezout's coefficients *)
Inductive Bezout (a b d:Z) : Prop :=
Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.
(** Existence of Bezout's coefficients for the [gcd] of [a] and [b] *)
Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.
Proof.
intros a b d Hgcd.
elim (euclid a b); intros u v d0 e g.
generalize (Zis_gcd_uniqueness_apart_sign a b d d0 Hgcd g).
intro H; elim H; clear H; intros.
apply Bezout_intro with u v.
rewrite H; assumption.
apply Bezout_intro with (- u) (- v).
rewrite H; rewrite <- e; ring.
Qed.
(** gcd of [ca] and [cb] is [c gcd(a,b)]. *)
Lemma Zis_gcd_mult :
forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).
Proof.
intros a b c d; simple induction 1. constructor; auto with zarith.
intros x Ha Hb.
elim (Zis_gcd_bezout a b d H). intros u v Huv.
elim Ha; intros a' Ha'.
elim Hb; intros b' Hb'.
apply Zdivide_intro with (u * a' + v * b').
rewrite <- Huv.
replace (c * (u * a + v * b)) with (u * (c * a) + v * (c * b)).
rewrite Ha'; rewrite Hb'; ring.
ring.
Qed.
(** * Relative primality *)
Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.
(** Bezout's theorem: [a] and [b] are relatively prime if and
only if there exist [u] and [v] such that [ua+vb = 1]. *)
Lemma rel_prime_bezout : forall a b:Z, rel_prime a b -> Bezout a b 1.
Proof.
intros a b; exact (Zis_gcd_bezout a b 1).
Qed.
Lemma bezout_rel_prime : forall a b:Z, Bezout a b 1 -> rel_prime a b.
Proof.
simple induction 1; constructor; auto with zarith.
intros. rewrite <- H0; auto with zarith.
Qed.
(** Gauss's theorem: if [a] divides [bc] and if [a] and [b] are
relatively prime, then [a] divides [c]. *)
Theorem Gauss : forall a b c:Z, (a | b * c) -> rel_prime a b -> (a | c).
Proof.
intros. elim (rel_prime_bezout a b H0); intros.
replace c with (c * 1); [ idtac | ring ].
rewrite <- H1.
replace (c * (u * a + v * b)) with (c * u * a + v * (b * c));
[ eauto with zarith | ring ].
Qed.
(** If [a] is relatively prime to [b] and [c], then it is to [bc] *)
Lemma rel_prime_mult :
forall a b c:Z, rel_prime a b -> rel_prime a c -> rel_prime a (b * c).
Proof.
intros a b c Hb Hc.
elim (rel_prime_bezout a b Hb); intros.
elim (rel_prime_bezout a c Hc); intros.
apply bezout_rel_prime.
apply Bezout_intro with
(u := u * u0 * a + v0 * c * u + u0 * v * b) (v := v * v0).
rewrite <- H.
replace (u * a + v * b) with ((u * a + v * b) * 1); [ idtac | ring ].
rewrite <- H0.
ring.
Qed.
Lemma rel_prime_cross_prod :
forall a b c d:Z,
rel_prime a b ->
rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.
Proof.
intros a b c d; intros.
elim (Z.divide_antisym b d).
split; auto with zarith.
rewrite H4 in H3.
rewrite Z.mul_comm in H3.
apply Z.mul_reg_l with d; auto with zarith.
intros; omega.
apply Gauss with a.
rewrite H3.
auto with zarith.
red; auto with zarith.
apply Gauss with c.
rewrite Z.mul_comm.
rewrite <- H3.
auto with zarith.
red; auto with zarith.
Qed.
(** After factorization by a gcd, the original numbers are relatively prime. *)
Lemma Zis_gcd_rel_prime :
forall a b g:Z,
b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).
Proof.
intros a b g; intros.
assert (g <> 0).
intro.
elim H1; intros.
elim H4; intros.
rewrite H2 in H6; subst b; omega.
unfold rel_prime.
destruct H1.
destruct H1 as (a',H1).
destruct H3 as (b',H3).
replace (a/g) with a';
[|rewrite H1; rewrite Z_div_mult; auto with zarith].
replace (b/g) with b';
[|rewrite H3; rewrite Z_div_mult; auto with zarith].
constructor.
exists a'; auto with zarith.
exists b'; auto with zarith.
intros x (xa,H5) (xb,H6).
destruct (H4 (x*g)) as (x',Hx').
exists xa; rewrite Z.mul_assoc; rewrite <- H5; auto.
exists xb; rewrite Z.mul_assoc; rewrite <- H6; auto.
replace g with (1*g) in Hx'; auto with zarith.
do 2 rewrite Z.mul_assoc in Hx'.
apply Z.mul_reg_r in Hx'; trivial.
rewrite Z.mul_1_r in Hx'.
exists x'; auto with zarith.
Qed.
Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a.
Proof.
intros a b H; auto with zarith.
red; apply Zis_gcd_sym; auto with zarith.
Qed.
Theorem rel_prime_div: forall p q r,
rel_prime p q -> (r | p) -> rel_prime r q.
Proof.
intros p q r H (u, H1); subst.
inversion_clear H as [H1 H2 H3].
red; apply Zis_gcd_intro; try apply Z.divide_1_l.
intros x H4 H5; apply H3; auto.
apply Z.divide_mul_r; auto.
Qed.
Theorem rel_prime_1: forall n, rel_prime 1 n.
Proof.
intros n; red; apply Zis_gcd_intro; auto.
exists 1; auto with zarith.
exists n; auto with zarith.
Qed.
Theorem not_rel_prime_0: forall n, 1 < n -> ~ rel_prime 0 n.
Proof.
intros n H H1; absurd (n = 1 \/ n = -1).
intros [H2 | H2]; subst; contradict H; auto with zarith.
case (Zis_gcd_unique 0 n n 1); auto.
apply Zis_gcd_intro; auto.
exists 0; auto with zarith.
exists 1; auto with zarith.
Qed.
Theorem rel_prime_mod: forall p q, 0 < q ->
rel_prime p q -> rel_prime (p mod q) q.
Proof.
intros p q H H0.
assert (H1: Bezout p q 1).
apply rel_prime_bezout; auto.
inversion_clear H1 as [q1 r1 H2].
apply bezout_rel_prime.
apply Bezout_intro with q1 (r1 + q1 * (p / q)).
rewrite <- H2.
pattern p at 3; rewrite (Z_div_mod_eq p q); try ring; auto with zarith.
Qed.
Theorem rel_prime_mod_rev: forall p q, 0 < q ->
rel_prime (p mod q) q -> rel_prime p q.
Proof.
intros p q H H0.
rewrite (Z_div_mod_eq p q); auto with zarith; red.
apply Zis_gcd_sym; apply Zis_gcd_for_euclid2; auto with zarith.
Qed.
Theorem Zrel_prime_neq_mod_0: forall a b, 1 < b -> rel_prime a b -> a mod b <> 0.
Proof.
intros a b H H1 H2.
case (not_rel_prime_0 _ H).
rewrite <- H2.
apply rel_prime_mod; auto with zarith.
Qed.
(** * Primality *)
Inductive prime (p:Z) : Prop :=
prime_intro :
1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.
(** The sole divisors of a prime number [p] are [-1], [1], [p] and [-p]. *)
Lemma prime_divisors :
forall p:Z,
prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p.
Proof.
destruct 1; intros.
assert
(a = - p \/ - p < a < -1 \/ a = -1 \/ a = 0 \/ a = 1 \/ 1 < a < p \/ a = p).
{ assert (Z.abs a <= Z.abs p) as H2.
apply Zdivide_bounds; [ assumption | omega ].
revert H2.
pattern (Z.abs a); apply Zabs_ind; pattern (Z.abs p); apply Zabs_ind;
intros; omega. }
intuition idtac.
(* -p < a < -1 *)
- absurd (rel_prime (- a) p); intuition.
inversion H2.
assert (- a | - a) by auto with zarith.
assert (- a | p) by auto with zarith.
apply H7, Z.divide_1_r in H8; intuition.
(* a = 0 *)
- inversion H1. subst a; omega.
(* 1 < a < p *)
- absurd (rel_prime a p); intuition.
inversion H2.
assert (a | a) by auto with zarith.
assert (a | p) by auto with zarith.
apply H7, Z.divide_1_r in H8; intuition.
Qed.
(** A prime number is relatively prime with any number it does not divide *)
Lemma prime_rel_prime :
forall p:Z, prime p -> forall a:Z, ~ (p | a) -> rel_prime p a.
Proof.
intros; constructor; intros; auto with zarith.
apply prime_divisors in H1; intuition; subst; auto with zarith.
- absurd (p | a); auto with zarith.
- absurd (p | a); intuition.
Qed.
Hint Resolve prime_rel_prime: zarith.
(** As a consequence, a prime number is relatively prime with smaller numbers *)
Theorem rel_prime_le_prime:
forall a p, prime p -> 1 <= a < p -> rel_prime a p.
Proof.
intros a p Hp [H1 H2].
apply rel_prime_sym; apply prime_rel_prime; auto.
intros [q Hq]; subst a.
case (Z.le_gt_cases q 0); intros Hl.
absurd (q * p <= 0 * p); auto with zarith.
absurd (1 * p <= q * p); auto with zarith.
Qed.
(** If a prime [p] divides [ab] then it divides either [a] or [b] *)
Lemma prime_mult :
forall p:Z, prime p -> forall a b:Z, (p | a * b) -> (p | a) \/ (p | b).
Proof.
intro p; simple induction 1; intros.
case (Zdivide_dec p a); intuition.
right; apply Gauss with a; auto with zarith.
Qed.
Lemma not_prime_0: ~ prime 0.
Proof.
intros H1; case (prime_divisors _ H1 2); auto with zarith.
Qed.
Lemma not_prime_1: ~ prime 1.
Proof.
intros H1; absurd (1 < 1); auto with zarith.
inversion H1; auto.
Qed.
Lemma prime_2: prime 2.
Proof.
apply prime_intro; auto with zarith.
intros n (H,H'); Z.le_elim H; auto with zarith.
- contradict H'; auto with zarith.
- subst n. constructor; auto with zarith.
Qed.
Theorem prime_3: prime 3.
Proof.
apply prime_intro; auto with zarith.
intros n (H,H'); Z.le_elim H; auto with zarith.
- replace n with 2 by omega.
constructor; auto with zarith.
intros x (q,Hq) (q',Hq').
exists (q' - q). ring_simplify. now rewrite <- Hq, <- Hq'.
- replace n with 1 by trivial.
constructor; auto with zarith.
Qed.
Theorem prime_ge_2 p : prime p -> 2 <= p.
Proof.
intros (Hp,_); auto with zarith.
Qed.
Definition prime' p := 1<p /\ (forall n, 1<n<p -> ~ (n|p)).
Lemma Z_0_1_more x : 0<=x -> x=0 \/ x=1 \/ 1<x.
Proof.
intros H. Z.le_elim H; auto.
apply Z.le_succ_l in H. change (1 <= x) in H. Z.le_elim H; auto.
Qed.
Theorem prime_alt p : prime' p <-> prime p.
Proof.
split; intros (Hp,H).
- (* prime -> prime' *)
constructor; trivial; intros n Hn.
constructor; auto with zarith; intros x Hxn Hxp.
rewrite <- Z.divide_abs_l in Hxn, Hxp |- *.
assert (Hx := Z.abs_nonneg x).
set (y:=Z.abs x) in *; clearbody y; clear x; rename y into x.
destruct (Z_0_1_more x Hx) as [->|[->|Hx']].
+ exfalso. apply Z.divide_0_l in Hxn. omega.
+ now exists 1.
+ elim (H x); auto.
split; trivial.
apply Z.le_lt_trans with n; auto with zarith.
apply Z.divide_pos_le; auto with zarith.
- (* prime' -> prime *)
constructor; trivial. intros n Hn Hnp.
case (Zis_gcd_unique n p n 1); auto with zarith.
constructor; auto with zarith.
apply H; auto with zarith.
Qed.
Theorem square_not_prime: forall a, ~ prime (a * a).
Proof.
intros a Ha.
rewrite <- (Z.abs_square a) in Ha.
assert (H:=Z.abs_nonneg a).
set (b:=Z.abs a) in *; clearbody b; clear a; rename b into a.
rewrite <- prime_alt in Ha; destruct Ha as (Ha,Ha').
assert (H' : 1 < a) by now apply (Z.square_lt_simpl_nonneg 1).
apply (Ha' a).
+ split; trivial.
rewrite <- (Z.mul_1_l a) at 1. apply Z.mul_lt_mono_pos_r; omega.
+ exists a; auto.
Qed.
Theorem prime_div_prime: forall p q,
prime p -> prime q -> (p | q) -> p = q.
Proof.
intros p q H H1 H2;
assert (Hp: 0 < p); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith.
assert (Hq: 0 < q); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith.
case prime_divisors with (2 := H2); auto.
intros H4; contradict Hp; subst; auto with zarith.
intros [H4| [H4 | H4]]; subst; auto.
contradict H; auto; apply not_prime_1.
contradict Hp; auto with zarith.
Qed.
(** we now prove that [Z.gcd] is indeed a gcd in
the sense of [Zis_gcd]. *)
Notation Zgcd_is_pos := Z.gcd_nonneg (compat "8.3").
Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Z.gcd a b).
Proof.
constructor.
apply Z.gcd_divide_l.
apply Z.gcd_divide_r.
apply Z.gcd_greatest.
Qed.
Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.
Proof.
intros x y; exists (Z.gcd x y).
split; [apply Zgcd_is_gcd | apply Z.gcd_nonneg].
Qed.
Theorem Zdivide_Zgcd: forall p q r : Z,
(p | q) -> (p | r) -> (p | Z.gcd q r).
Proof.
intros. now apply Z.gcd_greatest.
Qed.
Theorem Zis_gcd_gcd: forall a b c : Z,
0 <= c -> Zis_gcd a b c -> Z.gcd a b = c.
Proof.
intros a b c H1 H2.
case (Zis_gcd_uniqueness_apart_sign a b c (Z.gcd a b)); auto.
apply Zgcd_is_gcd; auto.
Z.le_elim H1.
- generalize (Z.gcd_nonneg a b); auto with zarith.
- subst. now case (Z.gcd a b).
Qed.
Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (compat "8.3").
Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (compat "8.3").
Theorem Zgcd_div_swap0 : forall a b : Z,
0 < Z.gcd a b ->
0 < b ->
(a / Z.gcd a b) * b = a * (b/Z.gcd a b).
Proof.
intros a b Hg Hb.
assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
pattern b at 2; rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b); auto.
repeat rewrite Z.mul_assoc; f_equal.
rewrite Z.mul_comm.
rewrite <- Zdivide_Zdiv_eq; auto.
Qed.
Theorem Zgcd_div_swap : forall a b c : Z,
0 < Z.gcd a b ->
0 < b ->
(c * a) / Z.gcd a b * b = c * a * (b/Z.gcd a b).
Proof.
intros a b c Hg Hb.
assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
pattern b at 2; rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b); auto.
repeat rewrite Z.mul_assoc; f_equal.
rewrite Zdivide_Zdiv_eq_2; auto.
repeat rewrite <- Z.mul_assoc; f_equal.
rewrite Z.mul_comm.
rewrite <- Zdivide_Zdiv_eq; auto.
Qed.
Notation Zgcd_comm := Z.gcd_comm (compat "8.3").
Lemma Zgcd_ass a b c : Z.gcd (Z.gcd a b) c = Z.gcd a (Z.gcd b c).
Proof.
symmetry. apply Z.gcd_assoc.
Qed.
Notation Zgcd_Zabs := Z.gcd_abs_l (compat "8.3").
Notation Zgcd_0 := Z.gcd_0_r (compat "8.3").
Notation Zgcd_1 := Z.gcd_1_r (compat "8.3").
Hint Resolve Z.gcd_0_r Z.gcd_1_r : zarith.
Theorem Zgcd_1_rel_prime : forall a b,
Z.gcd a b = 1 <-> rel_prime a b.
Proof.
unfold rel_prime; split; intro H.
rewrite <- H; apply Zgcd_is_gcd.
case (Zis_gcd_unique a b (Z.gcd a b) 1); auto.
apply Zgcd_is_gcd.
intros H2; absurd (0 <= Z.gcd a b); auto with zarith.
generalize (Z.gcd_nonneg a b); auto with zarith.
Qed.
Definition rel_prime_dec: forall a b,
{ rel_prime a b }+{ ~ rel_prime a b }.
Proof.
intros a b; case (Z.eq_dec (Z.gcd a b) 1); intros H1.
left; apply -> Zgcd_1_rel_prime; auto.
right; contradict H1; apply <- Zgcd_1_rel_prime; auto.
Defined.
Definition prime_dec_aux:
forall p m,
{ forall n, 1 < n < m -> rel_prime n p } +
{ exists n, 1 < n < m /\ ~ rel_prime n p }.
Proof.
intros p m.
case (Z_lt_dec 1 m); intros H1;
[ | left; intros; exfalso; omega ].
pattern m; apply natlike_rec; auto with zarith.
left; intros; exfalso; omega.
intros x Hx IH; destruct IH as [F|E].
destruct (rel_prime_dec x p) as [Y|N].
left; intros n [HH1 HH2].
rewrite Z.lt_succ_r in HH2.
Z.le_elim HH2; subst; auto with zarith.
- case (Z_lt_dec 1 x); intros HH1.
* right; exists x; split; auto with zarith.
* left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith.
- right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith.
Defined.
Definition prime_dec: forall p, { prime p }+{ ~ prime p }.
Proof.
intros p; case (Z_lt_dec 1 p); intros H1.
+ case (prime_dec_aux p p); intros H2.
* left; apply prime_intro; auto.
intros n (Hn1,Hn2). Z.le_elim Hn1; auto; subst n.
constructor; auto with zarith.
* right; intros H3; inversion_clear H3 as [Hp1 Hp2].
case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith.
+ right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto.
Defined.
Theorem not_prime_divide:
forall p, 1 < p -> ~ prime p -> exists n, 1 < n < p /\ (n | p).
Proof.
intros p Hp Hp1.
case (prime_dec_aux p p); intros H1.
- elim Hp1; constructor; auto.
intros n (Hn1,Hn2).
Z.le_elim Hn1; auto with zarith.
subst n; constructor; auto with zarith.
- case H1; intros n (Hn1,Hn2).
destruct (Z_0_1_more _ (Z.gcd_nonneg n p)) as [H|[H|H]].
+ exfalso. apply Z.gcd_eq_0_l in H. omega.
+ elim Hn2. red. rewrite <- H. apply Zgcd_is_gcd.
+ exists (Z.gcd n p); split; [ split; auto | apply Z.gcd_divide_r ].
apply Z.le_lt_trans with n; auto with zarith.
apply Z.divide_pos_le; auto with zarith.
apply Z.gcd_divide_l.
Qed.
|