1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
Require Export Arith_base.
Require Import BinPos BinInt BinNat Pnat Nnat.
Local Open Scope Z_scope.
(** Conversions between integers and natural numbers
Seven sections:
- chains of conversions (combining two conversions)
- module N2Z : from N to Z
- module Z2N : from Z to N (negative numbers rounded to 0)
- module Zabs2N : from Z to N (via the absolute value)
- module Nat2Z : from nat to Z
- module Z2Nat : from Z to nat (negative numbers rounded to 0)
- module Zabs2Nat : from Z to nat (via the absolute value)
*)
(** * Chains of conversions *)
(** When combining successive conversions, we have the following
commutative diagram:
<<
---> Nat ----
| ^ |
| | v
Pos ---------> Z
| | ^
| v |
----> N -----
>>
*)
Lemma nat_N_Z n : Z.of_N (N.of_nat n) = Z.of_nat n.
Proof.
now destruct n.
Qed.
Lemma N_nat_Z n : Z.of_nat (N.to_nat n) = Z.of_N n.
Proof.
destruct n; trivial. simpl.
destruct (Pos2Nat.is_succ p) as (m,H).
rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv.
Qed.
Lemma positive_nat_Z p : Z.of_nat (Pos.to_nat p) = Zpos p.
Proof.
destruct (Pos2Nat.is_succ p) as (n,H).
rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv.
Qed.
Lemma positive_N_Z p : Z.of_N (Npos p) = Zpos p.
Proof.
reflexivity.
Qed.
Lemma positive_N_nat p : N.to_nat (Npos p) = Pos.to_nat p.
Proof.
reflexivity.
Qed.
Lemma positive_nat_N p : N.of_nat (Pos.to_nat p) = Npos p.
Proof.
destruct (Pos2Nat.is_succ p) as (n,H).
rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv.
Qed.
Lemma Z_N_nat n : N.to_nat (Z.to_N n) = Z.to_nat n.
Proof.
now destruct n.
Qed.
Lemma Z_nat_N n : N.of_nat (Z.to_nat n) = Z.to_N n.
Proof.
destruct n; simpl; trivial. apply positive_nat_N.
Qed.
Lemma Zabs_N_nat n : N.to_nat (Z.abs_N n) = Z.abs_nat n.
Proof.
now destruct n.
Qed.
Lemma Zabs_nat_N n : N.of_nat (Z.abs_nat n) = Z.abs_N n.
Proof.
destruct n; simpl; trivial; apply positive_nat_N.
Qed.
(** * Conversions between [Z] and [N] *)
Module N2Z.
(** [Z.of_N] is a bijection between [N] and non-negative [Z],
with [Z.to_N] (or [Z.abs_N]) as reciprocal.
See [Z2N.id] below for the dual equation. *)
Lemma id n : Z.to_N (Z.of_N n) = n.
Proof.
now destruct n.
Qed.
(** [Z.of_N] is hence injective *)
Lemma inj n m : Z.of_N n = Z.of_N m -> n = m.
Proof.
destruct n, m; simpl; congruence.
Qed.
Lemma inj_iff n m : Z.of_N n = Z.of_N m <-> n = m.
Proof.
split. apply inj. intros; now f_equal.
Qed.
(** [Z.of_N] produce non-negative integers *)
Lemma is_nonneg n : 0 <= Z.of_N n.
Proof.
now destruct n.
Qed.
(** [Z.of_N], basic equations *)
Lemma inj_0 : Z.of_N 0 = 0.
Proof.
reflexivity.
Qed.
Lemma inj_pos p : Z.of_N (Npos p) = Zpos p.
Proof.
reflexivity.
Qed.
(** [Z.of_N] and usual operations. *)
Lemma inj_compare n m : (Z.of_N n ?= Z.of_N m) = (n ?= m)%N.
Proof.
now destruct n, m.
Qed.
Lemma inj_le n m : (n<=m)%N <-> Z.of_N n <= Z.of_N m.
Proof.
unfold Z.le. now rewrite inj_compare.
Qed.
Lemma inj_lt n m : (n<m)%N <-> Z.of_N n < Z.of_N m.
Proof.
unfold Z.lt. now rewrite inj_compare.
Qed.
Lemma inj_ge n m : (n>=m)%N <-> Z.of_N n >= Z.of_N m.
Proof.
unfold Z.ge. now rewrite inj_compare.
Qed.
Lemma inj_gt n m : (n>m)%N <-> Z.of_N n > Z.of_N m.
Proof.
unfold Z.gt. now rewrite inj_compare.
Qed.
Lemma inj_abs_N z : Z.of_N (Z.abs_N z) = Z.abs z.
Proof.
now destruct z.
Qed.
Lemma inj_add n m : Z.of_N (n+m) = Z.of_N n + Z.of_N m.
Proof.
now destruct n, m.
Qed.
Lemma inj_mul n m : Z.of_N (n*m) = Z.of_N n * Z.of_N m.
Proof.
now destruct n, m.
Qed.
Lemma inj_sub_max n m : Z.of_N (n-m) = Z.max 0 (Z.of_N n - Z.of_N m).
Proof.
destruct n as [|n], m as [|m]; simpl; trivial.
rewrite Z.pos_sub_spec, Pos.compare_sub_mask. unfold Pos.sub.
now destruct (Pos.sub_mask n m).
Qed.
Lemma inj_sub n m : (m<=n)%N -> Z.of_N (n-m) = Z.of_N n - Z.of_N m.
Proof.
intros H. rewrite inj_sub_max.
unfold N.le in H.
rewrite N.compare_antisym, <- inj_compare, Z.compare_sub in H.
destruct (Z.of_N n - Z.of_N m); trivial; now destruct H.
Qed.
Lemma inj_succ n : Z.of_N (N.succ n) = Z.succ (Z.of_N n).
Proof.
destruct n. trivial. simpl. now rewrite Pos.add_1_r.
Qed.
Lemma inj_pred_max n : Z.of_N (N.pred n) = Z.max 0 (Z.pred (Z.of_N n)).
Proof.
unfold Z.pred. now rewrite N.pred_sub, inj_sub_max.
Qed.
Lemma inj_pred n : (0<n)%N -> Z.of_N (N.pred n) = Z.pred (Z.of_N n).
Proof.
intros H. unfold Z.pred. rewrite N.pred_sub, inj_sub; trivial.
now apply N.le_succ_l in H.
Qed.
Lemma inj_min n m : Z.of_N (N.min n m) = Z.min (Z.of_N n) (Z.of_N m).
Proof.
unfold Z.min, N.min. rewrite inj_compare. now case N.compare.
Qed.
Lemma inj_max n m : Z.of_N (N.max n m) = Z.max (Z.of_N n) (Z.of_N m).
Proof.
unfold Z.max, N.max. rewrite inj_compare.
case N.compare_spec; intros; subst; trivial.
Qed.
Lemma inj_div n m : Z.of_N (n/m) = Z.of_N n / Z.of_N m.
Proof.
destruct m as [|m]. now destruct n.
apply Z.div_unique_pos with (Z.of_N (n mod (Npos m))).
split. apply is_nonneg. apply inj_lt. now apply N.mod_lt.
rewrite <- inj_mul, <- inj_add. f_equal. now apply N.div_mod.
Qed.
Lemma inj_mod n m : (m<>0)%N -> Z.of_N (n mod m) = (Z.of_N n) mod (Z.of_N m).
Proof.
intros Hm.
apply Z.mod_unique_pos with (Z.of_N (n / m)).
split. apply is_nonneg. apply inj_lt. now apply N.mod_lt.
rewrite <- inj_mul, <- inj_add. f_equal. now apply N.div_mod.
Qed.
Lemma inj_quot n m : Z.of_N (n/m) = Z.of_N n ÷ Z.of_N m.
Proof.
destruct m.
- now destruct n.
- rewrite Z.quot_div_nonneg, inj_div; trivial. apply is_nonneg. easy.
Qed.
Lemma inj_rem n m : Z.of_N (n mod m) = Z.rem (Z.of_N n) (Z.of_N m).
Proof.
destruct m.
- now destruct n.
- rewrite Z.rem_mod_nonneg, inj_mod; trivial. easy. apply is_nonneg. easy.
Qed.
Lemma inj_div2 n : Z.of_N (N.div2 n) = Z.div2 (Z.of_N n).
Proof.
destruct n as [|p]; trivial. now destruct p.
Qed.
Lemma inj_quot2 n : Z.of_N (N.div2 n) = Z.quot2 (Z.of_N n).
Proof.
destruct n as [|p]; trivial. now destruct p.
Qed.
Lemma inj_pow n m : Z.of_N (n^m) = (Z.of_N n)^(Z.of_N m).
Proof.
destruct n, m; trivial. now rewrite Z.pow_0_l. apply Pos2Z.inj_pow.
Qed.
Lemma inj_testbit a n :
Z.testbit (Z.of_N a) (Z.of_N n) = N.testbit a n.
Proof. apply Z.testbit_of_N. Qed.
End N2Z.
Module Z2N.
(** [Z.to_N] is a bijection between non-negative [Z] and [N],
with [Pos.of_N] as reciprocal.
See [N2Z.id] above for the dual equation. *)
Lemma id n : 0<=n -> Z.of_N (Z.to_N n) = n.
Proof.
destruct n; (now destruct 1) || trivial.
Qed.
(** [Z.to_N] is hence injective for non-negative integers. *)
Lemma inj n m : 0<=n -> 0<=m -> Z.to_N n = Z.to_N m -> n = m.
Proof.
intros. rewrite <- (id n), <- (id m) by trivial. now f_equal.
Qed.
Lemma inj_iff n m : 0<=n -> 0<=m -> (Z.to_N n = Z.to_N m <-> n = m).
Proof.
intros. split. now apply inj. intros; now subst.
Qed.
(** [Z.to_N], basic equations *)
Lemma inj_0 : Z.to_N 0 = 0%N.
Proof.
reflexivity.
Qed.
Lemma inj_pos n : Z.to_N (Zpos n) = Npos n.
Proof.
reflexivity.
Qed.
Lemma inj_neg n : Z.to_N (Zneg n) = 0%N.
Proof.
reflexivity.
Qed.
(** [Z.to_N] and operations *)
Lemma inj_add n m : 0<=n -> 0<=m -> Z.to_N (n+m) = (Z.to_N n + Z.to_N m)%N.
Proof.
destruct n, m; trivial; (now destruct 1) || (now destruct 2).
Qed.
Lemma inj_mul n m : 0<=n -> 0<=m -> Z.to_N (n*m) = (Z.to_N n * Z.to_N m)%N.
Proof.
destruct n, m; trivial; (now destruct 1) || (now destruct 2).
Qed.
Lemma inj_succ n : 0<=n -> Z.to_N (Z.succ n) = N.succ (Z.to_N n).
Proof.
unfold Z.succ. intros. rewrite inj_add by easy. apply N.add_1_r.
Qed.
Lemma inj_sub n m : 0<=m -> Z.to_N (n - m) = (Z.to_N n - Z.to_N m)%N.
Proof.
destruct n as [|n|n], m as [|m|m]; trivial; try (now destruct 1).
intros _. simpl.
rewrite Z.pos_sub_spec, Pos.compare_sub_mask. unfold Pos.sub.
now destruct (Pos.sub_mask n m).
Qed.
Lemma inj_pred n : Z.to_N (Z.pred n) = N.pred (Z.to_N n).
Proof.
unfold Z.pred. rewrite <- N.sub_1_r. now apply (inj_sub n 1).
Qed.
Lemma inj_compare n m : 0<=n -> 0<=m ->
(Z.to_N n ?= Z.to_N m)%N = (n ?= m).
Proof.
intros Hn Hm. now rewrite <- N2Z.inj_compare, !id.
Qed.
Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.to_N n <= Z.to_N m)%N).
Proof.
intros Hn Hm. unfold Z.le, N.le. now rewrite inj_compare.
Qed.
Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.to_N n < Z.to_N m)%N).
Proof.
intros Hn Hm. unfold Z.lt, N.lt. now rewrite inj_compare.
Qed.
Lemma inj_min n m : Z.to_N (Z.min n m) = N.min (Z.to_N n) (Z.to_N m).
Proof.
destruct n, m; simpl; trivial; unfold Z.min, N.min; simpl;
now case Pos.compare.
Qed.
Lemma inj_max n m : Z.to_N (Z.max n m) = N.max (Z.to_N n) (Z.to_N m).
Proof.
destruct n, m; simpl; trivial; unfold Z.max, N.max; simpl.
case Pos.compare_spec; intros; subst; trivial.
now case Pos.compare.
Qed.
Lemma inj_div n m : 0<=n -> 0<=m -> Z.to_N (n/m) = (Z.to_N n / Z.to_N m)%N.
Proof.
destruct n, m; trivial; intros Hn Hm;
(now destruct Hn) || (now destruct Hm) || clear.
simpl. rewrite <- (N2Z.id (_ / _)). f_equal. now rewrite N2Z.inj_div.
Qed.
Lemma inj_mod n m : 0<=n -> 0<m ->
Z.to_N (n mod m) = ((Z.to_N n) mod (Z.to_N m))%N.
Proof.
destruct n, m; trivial; intros Hn Hm;
(now destruct Hn) || (now destruct Hm) || clear.
simpl. rewrite <- (N2Z.id (_ mod _)). f_equal. now rewrite N2Z.inj_mod.
Qed.
Lemma inj_quot n m : 0<=n -> 0<=m -> Z.to_N (n÷m) = (Z.to_N n / Z.to_N m)%N.
Proof.
destruct m.
- now destruct n.
- intros. now rewrite Z.quot_div_nonneg, inj_div.
- now destruct 2.
Qed.
Lemma inj_rem n m :0<=n -> 0<=m ->
Z.to_N (Z.rem n m) = ((Z.to_N n) mod (Z.to_N m))%N.
Proof.
destruct m.
- now destruct n.
- intros. now rewrite Z.rem_mod_nonneg, inj_mod.
- now destruct 2.
Qed.
Lemma inj_div2 n : Z.to_N (Z.div2 n) = N.div2 (Z.to_N n).
Proof.
destruct n as [|p|p]; trivial. now destruct p.
Qed.
Lemma inj_quot2 n : Z.to_N (Z.quot2 n) = N.div2 (Z.to_N n).
Proof.
destruct n as [|p|p]; trivial; now destruct p.
Qed.
Lemma inj_pow n m : 0<=n -> 0<=m -> Z.to_N (n^m) = ((Z.to_N n)^(Z.to_N m))%N.
Proof.
destruct m.
- trivial.
- intros. now rewrite <- (N2Z.id (_ ^ _)), N2Z.inj_pow, id.
- now destruct 2.
Qed.
Lemma inj_testbit a n : 0<=n ->
Z.testbit (Z.of_N a) n = N.testbit a (Z.to_N n).
Proof. apply Z.testbit_of_N'. Qed.
End Z2N.
Module Zabs2N.
(** Results about [Z.abs_N], converting absolute values of [Z] integers
to [N]. *)
Lemma abs_N_spec n : Z.abs_N n = Z.to_N (Z.abs n).
Proof.
now destruct n.
Qed.
Lemma abs_N_nonneg n : 0<=n -> Z.abs_N n = Z.to_N n.
Proof.
destruct n; trivial; now destruct 1.
Qed.
Lemma id_abs n : Z.of_N (Z.abs_N n) = Z.abs n.
Proof.
now destruct n.
Qed.
Lemma id n : Z.abs_N (Z.of_N n) = n.
Proof.
now destruct n.
Qed.
(** [Z.abs_N], basic equations *)
Lemma inj_0 : Z.abs_N 0 = 0%N.
Proof.
reflexivity.
Qed.
Lemma inj_pos p : Z.abs_N (Zpos p) = Npos p.
Proof.
reflexivity.
Qed.
Lemma inj_neg p : Z.abs_N (Zneg p) = Npos p.
Proof.
reflexivity.
Qed.
(** [Z.abs_N] and usual operations, with non-negative integers *)
Lemma inj_opp n : Z.abs_N (-n) = Z.abs_N n.
Proof.
now destruct n.
Qed.
Lemma inj_succ n : 0<=n -> Z.abs_N (Z.succ n) = N.succ (Z.abs_N n).
Proof.
intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_succ.
now apply Z.le_le_succ_r.
Qed.
Lemma inj_add n m : 0<=n -> 0<=m -> Z.abs_N (n+m) = (Z.abs_N n + Z.abs_N m)%N.
Proof.
intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_add.
now apply Z.add_nonneg_nonneg.
Qed.
Lemma inj_mul n m : Z.abs_N (n*m) = (Z.abs_N n * Z.abs_N m)%N.
Proof.
now destruct n, m.
Qed.
Lemma inj_sub n m : 0<=m<=n -> Z.abs_N (n-m) = (Z.abs_N n - Z.abs_N m)%N.
Proof.
intros (Hn,H). rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_sub.
Z.order.
now apply Z.le_0_sub.
Qed.
Lemma inj_pred n : 0<n -> Z.abs_N (Z.pred n) = N.pred (Z.abs_N n).
Proof.
intros. rewrite !abs_N_nonneg. now apply Z2N.inj_pred.
Z.order.
apply Z.lt_succ_r. now rewrite Z.succ_pred.
Qed.
Lemma inj_compare n m : 0<=n -> 0<=m ->
(Z.abs_N n ?= Z.abs_N m)%N = (n ?= m).
Proof.
intros. rewrite !abs_N_nonneg by trivial. now apply Z2N.inj_compare.
Qed.
Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.abs_N n <= Z.abs_N m)%N).
Proof.
intros Hn Hm. unfold Z.le, N.le. now rewrite inj_compare.
Qed.
Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.abs_N n < Z.abs_N m)%N).
Proof.
intros Hn Hm. unfold Z.lt, N.lt. now rewrite inj_compare.
Qed.
Lemma inj_min n m : 0<=n -> 0<=m ->
Z.abs_N (Z.min n m) = N.min (Z.abs_N n) (Z.abs_N m).
Proof.
intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_min.
now apply Z.min_glb.
Qed.
Lemma inj_max n m : 0<=n -> 0<=m ->
Z.abs_N (Z.max n m) = N.max (Z.abs_N n) (Z.abs_N m).
Proof.
intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_max.
transitivity n; trivial. apply Z.le_max_l.
Qed.
Lemma inj_quot n m : Z.abs_N (n÷m) = ((Z.abs_N n) / (Z.abs_N m))%N.
Proof.
assert (forall p q, Z.abs_N (Zpos p ÷ Zpos q) = (Npos p / Npos q)%N).
intros. rewrite abs_N_nonneg. now apply Z2N.inj_quot. now apply Z.quot_pos.
destruct n, m; trivial; simpl.
- trivial.
- now rewrite <- Pos2Z.opp_pos, Z.quot_opp_r, inj_opp.
- now rewrite <- Pos2Z.opp_pos, Z.quot_opp_l, inj_opp.
- now rewrite <- 2 Pos2Z.opp_pos, Z.quot_opp_opp.
Qed.
Lemma inj_rem n m : Z.abs_N (Z.rem n m) = ((Z.abs_N n) mod (Z.abs_N m))%N.
Proof.
assert
(forall p q, Z.abs_N (Z.rem (Zpos p) (Zpos q)) = ((Npos p) mod (Npos q))%N).
intros. rewrite abs_N_nonneg. now apply Z2N.inj_rem. now apply Z.rem_nonneg.
destruct n, m; trivial; simpl.
- trivial.
- now rewrite <- Pos2Z.opp_pos, Z.rem_opp_r.
- now rewrite <- Pos2Z.opp_pos, Z.rem_opp_l, inj_opp.
- now rewrite <- 2 Pos2Z.opp_pos, Z.rem_opp_opp, inj_opp.
Qed.
Lemma inj_pow n m : 0<=m -> Z.abs_N (n^m) = ((Z.abs_N n)^(Z.abs_N m))%N.
Proof.
intros Hm. rewrite abs_N_spec, Z.abs_pow, Z2N.inj_pow, <- abs_N_spec; trivial.
f_equal. symmetry; now apply abs_N_nonneg. apply Z.abs_nonneg.
Qed.
(** [Z.abs_N] and usual operations, statements with [Z.abs] *)
Lemma inj_succ_abs n : Z.abs_N (Z.succ (Z.abs n)) = N.succ (Z.abs_N n).
Proof.
destruct n; simpl; trivial; now rewrite Pos.add_1_r.
Qed.
Lemma inj_add_abs n m :
Z.abs_N (Z.abs n + Z.abs m) = (Z.abs_N n + Z.abs_N m)%N.
Proof.
now destruct n, m.
Qed.
Lemma inj_mul_abs n m :
Z.abs_N (Z.abs n * Z.abs m) = (Z.abs_N n * Z.abs_N m)%N.
Proof.
now destruct n, m.
Qed.
End Zabs2N.
(** * Conversions between [Z] and [nat] *)
Module Nat2Z.
(** [Z.of_nat], basic equations *)
Lemma inj_0 : Z.of_nat 0 = 0.
Proof.
reflexivity.
Qed.
Lemma inj_succ n : Z.of_nat (S n) = Z.succ (Z.of_nat n).
Proof.
destruct n. trivial. simpl. apply Pos2Z.inj_succ.
Qed.
(** [Z.of_N] produce non-negative integers *)
Lemma is_nonneg n : 0 <= Z.of_nat n.
Proof.
now induction n.
Qed.
(** [Z.of_nat] is a bijection between [nat] and non-negative [Z],
with [Z.to_nat] (or [Z.abs_nat]) as reciprocal.
See [Z2Nat.id] below for the dual equation. *)
Lemma id n : Z.to_nat (Z.of_nat n) = n.
Proof.
now rewrite <- nat_N_Z, <- Z_N_nat, N2Z.id, Nat2N.id.
Qed.
(** [Z.of_nat] is hence injective *)
Lemma inj n m : Z.of_nat n = Z.of_nat m -> n = m.
Proof.
intros H. now rewrite <- (id n), <- (id m), H.
Qed.
Lemma inj_iff n m : Z.of_nat n = Z.of_nat m <-> n = m.
Proof.
split. apply inj. intros; now f_equal.
Qed.
(** [Z.of_nat] and usual operations *)
Lemma inj_compare n m : (Z.of_nat n ?= Z.of_nat m) = (n ?= m)%nat.
Proof.
now rewrite <-!nat_N_Z, N2Z.inj_compare, <- Nat2N.inj_compare.
Qed.
Lemma inj_le n m : (n<=m)%nat <-> Z.of_nat n <= Z.of_nat m.
Proof.
unfold Z.le. now rewrite inj_compare, nat_compare_le.
Qed.
Lemma inj_lt n m : (n<m)%nat <-> Z.of_nat n < Z.of_nat m.
Proof.
unfold Z.lt. now rewrite inj_compare, nat_compare_lt.
Qed.
Lemma inj_ge n m : (n>=m)%nat <-> Z.of_nat n >= Z.of_nat m.
Proof.
unfold Z.ge. now rewrite inj_compare, nat_compare_ge.
Qed.
Lemma inj_gt n m : (n>m)%nat <-> Z.of_nat n > Z.of_nat m.
Proof.
unfold Z.gt. now rewrite inj_compare, nat_compare_gt.
Qed.
Lemma inj_abs_nat z : Z.of_nat (Z.abs_nat z) = Z.abs z.
Proof.
destruct z; simpl; trivial;
destruct (Pos2Nat.is_succ p) as (n,H); rewrite H; simpl; f_equal;
now apply SuccNat2Pos.inv.
Qed.
Lemma inj_add n m : Z.of_nat (n+m) = Z.of_nat n + Z.of_nat m.
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_add, N2Z.inj_add.
Qed.
Lemma inj_mul n m : Z.of_nat (n*m) = Z.of_nat n * Z.of_nat m.
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_mul, N2Z.inj_mul.
Qed.
Lemma inj_sub_max n m : Z.of_nat (n-m) = Z.max 0 (Z.of_nat n - Z.of_nat m).
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub_max.
Qed.
Lemma inj_sub n m : (m<=n)%nat -> Z.of_nat (n-m) = Z.of_nat n - Z.of_nat m.
Proof.
rewrite nat_compare_le, Nat2N.inj_compare. intros.
now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub.
Qed.
Lemma inj_pred_max n : Z.of_nat (Nat.pred n) = Z.max 0 (Z.pred (Z.of_nat n)).
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred_max.
Qed.
Lemma inj_pred n : (0<n)%nat -> Z.of_nat (Nat.pred n) = Z.pred (Z.of_nat n).
Proof.
rewrite nat_compare_lt, Nat2N.inj_compare. intros.
now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred.
Qed.
Lemma inj_min n m : Z.of_nat (Nat.min n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_min, N2Z.inj_min.
Qed.
Lemma inj_max n m : Z.of_nat (Nat.max n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof.
now rewrite <- !nat_N_Z, Nat2N.inj_max, N2Z.inj_max.
Qed.
End Nat2Z.
Module Z2Nat.
(** [Z.to_nat] is a bijection between non-negative [Z] and [nat],
with [Pos.of_nat] as reciprocal.
See [nat2Z.id] above for the dual equation. *)
Lemma id n : 0<=n -> Z.of_nat (Z.to_nat n) = n.
Proof.
intros. now rewrite <- Z_N_nat, <- nat_N_Z, N2Nat.id, Z2N.id.
Qed.
(** [Z.to_nat] is hence injective for non-negative integers. *)
Lemma inj n m : 0<=n -> 0<=m -> Z.to_nat n = Z.to_nat m -> n = m.
Proof.
intros. rewrite <- (id n), <- (id m) by trivial. now f_equal.
Qed.
Lemma inj_iff n m : 0<=n -> 0<=m -> (Z.to_nat n = Z.to_nat m <-> n = m).
Proof.
intros. split. now apply inj. intros; now subst.
Qed.
(** [Z.to_nat], basic equations *)
Lemma inj_0 : Z.to_nat 0 = O.
Proof.
reflexivity.
Qed.
Lemma inj_pos n : Z.to_nat (Zpos n) = Pos.to_nat n.
Proof.
reflexivity.
Qed.
Lemma inj_neg n : Z.to_nat (Zneg n) = O.
Proof.
reflexivity.
Qed.
(** [Z.to_nat] and operations *)
Lemma inj_add n m : 0<=n -> 0<=m ->
Z.to_nat (n+m) = (Z.to_nat n + Z.to_nat m)%nat.
Proof.
intros. now rewrite <- !Z_N_nat, Z2N.inj_add, N2Nat.inj_add.
Qed.
Lemma inj_mul n m : 0<=n -> 0<=m ->
Z.to_nat (n*m) = (Z.to_nat n * Z.to_nat m)%nat.
Proof.
intros. now rewrite <- !Z_N_nat, Z2N.inj_mul, N2Nat.inj_mul.
Qed.
Lemma inj_succ n : 0<=n -> Z.to_nat (Z.succ n) = S (Z.to_nat n).
Proof.
intros. now rewrite <- !Z_N_nat, Z2N.inj_succ, N2Nat.inj_succ.
Qed.
Lemma inj_sub n m : 0<=m -> Z.to_nat (n - m) = (Z.to_nat n - Z.to_nat m)%nat.
Proof.
intros. now rewrite <- !Z_N_nat, Z2N.inj_sub, N2Nat.inj_sub.
Qed.
Lemma inj_pred n : Z.to_nat (Z.pred n) = Nat.pred (Z.to_nat n).
Proof.
now rewrite <- !Z_N_nat, Z2N.inj_pred, N2Nat.inj_pred.
Qed.
Lemma inj_compare n m : 0<=n -> 0<=m ->
(Z.to_nat n ?= Z.to_nat m)%nat = (n ?= m).
Proof.
intros Hn Hm. now rewrite <- Nat2Z.inj_compare, !id.
Qed.
Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.to_nat n <= Z.to_nat m)%nat).
Proof.
intros Hn Hm. unfold Z.le. now rewrite nat_compare_le, inj_compare.
Qed.
Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.to_nat n < Z.to_nat m)%nat).
Proof.
intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare.
Qed.
Lemma inj_min n m : Z.to_nat (Z.min n m) = Nat.min (Z.to_nat n) (Z.to_nat m).
Proof.
now rewrite <- !Z_N_nat, Z2N.inj_min, N2Nat.inj_min.
Qed.
Lemma inj_max n m : Z.to_nat (Z.max n m) = Nat.max (Z.to_nat n) (Z.to_nat m).
Proof.
now rewrite <- !Z_N_nat, Z2N.inj_max, N2Nat.inj_max.
Qed.
End Z2Nat.
Module Zabs2Nat.
(** Results about [Z.abs_nat], converting absolute values of [Z] integers
to [nat]. *)
Lemma abs_nat_spec n : Z.abs_nat n = Z.to_nat (Z.abs n).
Proof.
now destruct n.
Qed.
Lemma abs_nat_nonneg n : 0<=n -> Z.abs_nat n = Z.to_nat n.
Proof.
destruct n; trivial; now destruct 1.
Qed.
Lemma id_abs n : Z.of_nat (Z.abs_nat n) = Z.abs n.
Proof.
rewrite <-Zabs_N_nat, N_nat_Z. apply Zabs2N.id_abs.
Qed.
Lemma id n : Z.abs_nat (Z.of_nat n) = n.
Proof.
now rewrite <-Zabs_N_nat, <-nat_N_Z, Zabs2N.id, Nat2N.id.
Qed.
(** [Z.abs_nat], basic equations *)
Lemma inj_0 : Z.abs_nat 0 = 0%nat.
Proof.
reflexivity.
Qed.
Lemma inj_pos p : Z.abs_nat (Zpos p) = Pos.to_nat p.
Proof.
reflexivity.
Qed.
Lemma inj_neg p : Z.abs_nat (Zneg p) = Pos.to_nat p.
Proof.
reflexivity.
Qed.
(** [Z.abs_nat] and usual operations, with non-negative integers *)
Lemma inj_succ n : 0<=n -> Z.abs_nat (Z.succ n) = S (Z.abs_nat n).
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_succ, N2Nat.inj_succ.
Qed.
Lemma inj_add n m : 0<=n -> 0<=m ->
Z.abs_nat (n+m) = (Z.abs_nat n + Z.abs_nat m)%nat.
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_add, N2Nat.inj_add.
Qed.
Lemma inj_mul n m : Z.abs_nat (n*m) = (Z.abs_nat n * Z.abs_nat m)%nat.
Proof.
destruct n, m; simpl; trivial using Pos2Nat.inj_mul.
Qed.
Lemma inj_sub n m : 0<=m<=n ->
Z.abs_nat (n-m) = (Z.abs_nat n - Z.abs_nat m)%nat.
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_sub, N2Nat.inj_sub.
Qed.
Lemma inj_pred n : 0<n -> Z.abs_nat (Z.pred n) = Nat.pred (Z.abs_nat n).
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_pred, N2Nat.inj_pred.
Qed.
Lemma inj_compare n m : 0<=n -> 0<=m ->
(Z.abs_nat n ?= Z.abs_nat m)%nat = (n ?= m).
Proof.
intros. now rewrite <- !Zabs_N_nat, <- N2Nat.inj_compare, Zabs2N.inj_compare.
Qed.
Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.abs_nat n <= Z.abs_nat m)%nat).
Proof.
intros Hn Hm. unfold Z.le. now rewrite nat_compare_le, inj_compare.
Qed.
Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.abs_nat n < Z.abs_nat m)%nat).
Proof.
intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare.
Qed.
Lemma inj_min n m : 0<=n -> 0<=m ->
Z.abs_nat (Z.min n m) = Nat.min (Z.abs_nat n) (Z.abs_nat m).
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_min, N2Nat.inj_min.
Qed.
Lemma inj_max n m : 0<=n -> 0<=m ->
Z.abs_nat (Z.max n m) = Nat.max (Z.abs_nat n) (Z.abs_nat m).
Proof.
intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_max, N2Nat.inj_max.
Qed.
(** [Z.abs_nat] and usual operations, statements with [Z.abs] *)
Lemma inj_succ_abs n : Z.abs_nat (Z.succ (Z.abs n)) = S (Z.abs_nat n).
Proof.
now rewrite <- !Zabs_N_nat, Zabs2N.inj_succ_abs, N2Nat.inj_succ.
Qed.
Lemma inj_add_abs n m :
Z.abs_nat (Z.abs n + Z.abs m) = (Z.abs_nat n + Z.abs_nat m)%nat.
Proof.
now rewrite <- !Zabs_N_nat, Zabs2N.inj_add_abs, N2Nat.inj_add.
Qed.
Lemma inj_mul_abs n m :
Z.abs_nat (Z.abs n * Z.abs m) = (Z.abs_nat n * Z.abs_nat m)%nat.
Proof.
now rewrite <- !Zabs_N_nat, Zabs2N.inj_mul_abs, N2Nat.inj_mul.
Qed.
End Zabs2Nat.
(** Compatibility *)
Definition neq (x y:nat) := x <> y.
Lemma inj_neq n m : neq n m -> Zne (Z.of_nat n) (Z.of_nat m).
Proof. intros H H'. now apply H, Nat2Z.inj. Qed.
Lemma Zpos_P_of_succ_nat n : Zpos (Pos.of_succ_nat n) = Z.succ (Z.of_nat n).
Proof (Nat2Z.inj_succ n).
(** For these one, used in omega, a Definition is necessary *)
Definition inj_eq := (f_equal Z.of_nat).
Definition inj_le n m := proj1 (Nat2Z.inj_le n m).
Definition inj_lt n m := proj1 (Nat2Z.inj_lt n m).
Definition inj_ge n m := proj1 (Nat2Z.inj_ge n m).
Definition inj_gt n m := proj1 (Nat2Z.inj_gt n m).
(** For the others, a Notation is fine *)
Notation inj_0 := Nat2Z.inj_0 (only parsing).
Notation inj_S := Nat2Z.inj_succ (only parsing).
Notation inj_compare := Nat2Z.inj_compare (only parsing).
Notation inj_eq_rev := Nat2Z.inj (only parsing).
Notation inj_eq_iff := (fun n m => iff_sym (Nat2Z.inj_iff n m)) (only parsing).
Notation inj_le_iff := Nat2Z.inj_le (only parsing).
Notation inj_lt_iff := Nat2Z.inj_lt (only parsing).
Notation inj_ge_iff := Nat2Z.inj_ge (only parsing).
Notation inj_gt_iff := Nat2Z.inj_gt (only parsing).
Notation inj_le_rev := (fun n m => proj2 (Nat2Z.inj_le n m)) (only parsing).
Notation inj_lt_rev := (fun n m => proj2 (Nat2Z.inj_lt n m)) (only parsing).
Notation inj_ge_rev := (fun n m => proj2 (Nat2Z.inj_ge n m)) (only parsing).
Notation inj_gt_rev := (fun n m => proj2 (Nat2Z.inj_gt n m)) (only parsing).
Notation inj_plus := Nat2Z.inj_add (only parsing).
Notation inj_mult := Nat2Z.inj_mul (only parsing).
Notation inj_minus1 := Nat2Z.inj_sub (only parsing).
Notation inj_minus := Nat2Z.inj_sub_max (only parsing).
Notation inj_min := Nat2Z.inj_min (only parsing).
Notation inj_max := Nat2Z.inj_max (only parsing).
Notation Z_of_nat_of_P := positive_nat_Z (only parsing).
Notation Zpos_eq_Z_of_nat_o_nat_of_P :=
(fun p => eq_sym (positive_nat_Z p)) (only parsing).
Notation Z_of_nat_of_N := N_nat_Z (only parsing).
Notation Z_of_N_of_nat := nat_N_Z (only parsing).
Notation Z_of_N_eq := (f_equal Z.of_N) (only parsing).
Notation Z_of_N_eq_rev := N2Z.inj (only parsing).
Notation Z_of_N_eq_iff := (fun n m => iff_sym (N2Z.inj_iff n m)) (only parsing).
Notation Z_of_N_compare := N2Z.inj_compare (only parsing).
Notation Z_of_N_le_iff := N2Z.inj_le (only parsing).
Notation Z_of_N_lt_iff := N2Z.inj_lt (only parsing).
Notation Z_of_N_ge_iff := N2Z.inj_ge (only parsing).
Notation Z_of_N_gt_iff := N2Z.inj_gt (only parsing).
Notation Z_of_N_le := (fun n m => proj1 (N2Z.inj_le n m)) (only parsing).
Notation Z_of_N_lt := (fun n m => proj1 (N2Z.inj_lt n m)) (only parsing).
Notation Z_of_N_ge := (fun n m => proj1 (N2Z.inj_ge n m)) (only parsing).
Notation Z_of_N_gt := (fun n m => proj1 (N2Z.inj_gt n m)) (only parsing).
Notation Z_of_N_le_rev := (fun n m => proj2 (N2Z.inj_le n m)) (only parsing).
Notation Z_of_N_lt_rev := (fun n m => proj2 (N2Z.inj_lt n m)) (only parsing).
Notation Z_of_N_ge_rev := (fun n m => proj2 (N2Z.inj_ge n m)) (only parsing).
Notation Z_of_N_gt_rev := (fun n m => proj2 (N2Z.inj_gt n m)) (only parsing).
Notation Z_of_N_pos := N2Z.inj_pos (only parsing).
Notation Z_of_N_abs := N2Z.inj_abs_N (only parsing).
Notation Z_of_N_le_0 := N2Z.is_nonneg (only parsing).
Notation Z_of_N_plus := N2Z.inj_add (only parsing).
Notation Z_of_N_mult := N2Z.inj_mul (only parsing).
Notation Z_of_N_minus := N2Z.inj_sub_max (only parsing).
Notation Z_of_N_succ := N2Z.inj_succ (only parsing).
Notation Z_of_N_min := N2Z.inj_min (only parsing).
Notation Z_of_N_max := N2Z.inj_max (only parsing).
Notation Zabs_of_N := Zabs2N.id (only parsing).
Notation Zabs_N_succ_abs := Zabs2N.inj_succ_abs (only parsing).
Notation Zabs_N_succ := Zabs2N.inj_succ (only parsing).
Notation Zabs_N_plus_abs := Zabs2N.inj_add_abs (only parsing).
Notation Zabs_N_plus := Zabs2N.inj_add (only parsing).
Notation Zabs_N_mult_abs := Zabs2N.inj_mul_abs (only parsing).
Notation Zabs_N_mult := Zabs2N.inj_mul (only parsing).
Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z.of_nat (n - m) = 0.
Proof.
intros. rewrite not_le_minus_0; auto with arith.
Qed.
|