aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zminmax.v
blob: c311c7ce9d4af73be0c23813e21bf728718b0141 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*i $Id$ i*)

Require Import Zmin Zmax.
Require Import BinInt Zorder.

Open Scope Z_scope.

(** *** Lattice properties of min and max on Z *)

(** Absorption *)

Lemma Zmin_max_absorption_r_r : forall n m, Zmax n (Zmin n m) = n.
Proof.
intros; apply Zmin_case_strong; intro; apply Zmax_case_strong; intro; 
  reflexivity || apply Zle_antisym; trivial.
Qed.

Lemma Zmax_min_absorption_r_r : forall n m, Zmin n (Zmax n m) = n.
Proof.
intros; apply Zmax_case_strong; intro; apply Zmin_case_strong; intro; 
  reflexivity || apply Zle_antisym; trivial.
Qed.

(** Distributivity *)

Lemma Zmax_min_distr_r : 
  forall n m p, Zmax n (Zmin m p) = Zmin (Zmax n m) (Zmax n p).
Proof.
intros.
repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; 
  reflexivity ||
  apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.

Lemma Zmin_max_distr_r : 
  forall n m p, Zmin n (Zmax m p) = Zmax (Zmin n m) (Zmin n p).
Proof.
intros.
repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros; 
  reflexivity ||
  apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.

(** Modularity *)

Lemma Zmax_min_modular_r :
  forall n m p, Zmax n (Zmin m (Zmax n p)) = Zmin (Zmax n m) (Zmax n p).
Proof.
intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
  reflexivity ||
  apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.

Lemma Zmin_max_modular_r :
  forall n m p, Zmin n (Zmax m (Zmin n p)) = Zmax (Zmin n m) (Zmin n p).
Proof.
intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
  reflexivity ||
  apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.

(** Disassociativity *)

Lemma max_min_disassoc : forall n m p, Zmin n (Zmax m p) <= Zmax (Zmin n m) p.
Proof.
intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
  apply Zle_refl || (assumption || eapply Zle_trans; eassumption).
Qed.