1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** Initial version from Pierre Crégut (CNET, Lannion, France), 1996.
Further extensions by the Coq development team, with suggestions
from Russell O'Connor (Radbout U., Nijmegen, The Netherlands).
*)
Require Import Arith_base.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Open Local Scope Z_scope.
(**************************************)
(** Minimum on binary integer numbers *)
Unboxed Definition Zmin (n m:Z) :=
match n ?= m with
| Eq | Lt => n
| Gt => m
end.
(** * Characterization of the minimum on binary integer numbers *)
Lemma Zmin_case_strong : forall (n m:Z) (P:Z -> Type),
(n<=m -> P n) -> (m<=n -> P m) -> P (Zmin n m).
Proof.
intros n m P H1 H2; unfold Zmin, Zle, Zge in *.
rewrite <- (Zcompare_antisym n m) in H2.
destruct (n ?= m); (apply H1|| apply H2); discriminate.
Qed.
Lemma Zmin_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmin n m).
Proof.
intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith.
Qed.
Lemma Zmin_spec : forall x y:Z,
x <= y /\ Zmin x y = x \/
x > y /\ Zmin x y = y.
Proof.
intros; unfold Zmin, Zle, Zgt.
destruct (Zcompare x y); [ left | left | right ]; split; auto; discriminate.
Qed.
(** * Greatest lower bound properties of min *)
Lemma Zle_min_l : forall n m:Z, Zmin n m <= n.
Proof.
intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E;
[ apply Zle_refl
| apply Zle_refl
| apply Zlt_le_weak; apply Zgt_lt; exact E ].
Qed.
Lemma Zle_min_r : forall n m:Z, Zmin n m <= m.
Proof.
intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E;
[ unfold Zle in |- *; rewrite E; discriminate
| unfold Zle in |- *; rewrite E; discriminate
| apply Zle_refl ].
Qed.
Lemma Zmin_glb : forall n m p:Z, p <= n -> p <= m -> p <= Zmin n m.
Proof.
intros; apply Zmin_case; assumption.
Qed.
(** * Semi-lattice properties of min *)
Lemma Zmin_idempotent : forall n:Z, Zmin n n = n.
Proof.
unfold Zmin in |- *; intros; elim (n ?= n); auto.
Qed.
Notation Zmin_n_n := Zmin_idempotent (only parsing).
Lemma Zmin_comm : forall n m:Z, Zmin n m = Zmin m n.
Proof.
intros n m; unfold Zmin.
rewrite <- (Zcompare_antisym n m).
assert (H:=Zcompare_Eq_eq n m).
destruct (n ?= m); simpl; auto.
Qed.
Lemma Zmin_assoc : forall n m p:Z, Zmin n (Zmin m p) = Zmin (Zmin n m) p.
Proof.
intros n m p; repeat apply Zmin_case_strong; intros;
reflexivity || (try apply Zle_antisym); eauto with zarith.
Qed.
(** * Additional properties of min *)
Lemma Zmin_irreducible_inf : forall n m:Z, {Zmin n m = n} + {Zmin n m = m}.
Proof.
unfold Zmin in |- *; intros; elim (n ?= m); auto.
Qed.
Lemma Zmin_irreducible : forall n m:Z, Zmin n m = n \/ Zmin n m = m.
Proof.
intros n m; destruct (Zmin_irreducible_inf n m); [left|right]; trivial.
Qed.
Notation Zmin_or := Zmin_irreducible (only parsing).
Lemma Zmin_le_prime_inf : forall n m p:Z, Zmin n m <= p -> {n <= p} + {m <= p}.
Proof.
intros n m p; apply Zmin_case; auto.
Qed.
(** * Operations preserving min *)
Lemma Zsucc_min_distr :
forall n m:Z, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m).
Proof.
intros n m; unfold Zmin in |- *; rewrite (Zcompare_succ_compat n m);
elim_compare n m; intros E; rewrite E; auto with arith.
Qed.
Notation Zmin_SS := Zsucc_min_distr (only parsing).
Lemma Zplus_min_distr_r : forall n m p:Z, Zmin (n + p) (m + p) = Zmin n m + p.
Proof.
intros x y n; unfold Zmin in |- *.
rewrite (Zplus_comm x n); rewrite (Zplus_comm y n);
rewrite (Zcompare_plus_compat x y n).
case (x ?= y); apply Zplus_comm.
Qed.
Notation Zmin_plus := Zplus_min_distr_r (only parsing).
(** * Minimum and Zpos *)
Lemma Zpos_min : forall p q, Zpos (Pmin p q) = Zmin (Zpos p) (Zpos q).
Proof.
intros; unfold Zmin, Pmin; simpl; destruct Pcompare; auto.
Qed.
|