blob: b52da85638bafe7e078d540f047d6e9fd118b4fa (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** THIS FILE IS DEPRECATED. *)
Require Export BinInt Zcompare Zorder.
Local Open Scope Z_scope.
(** Definition [Z.max] is now [BinInt.Z.max]. *)
(** Exact compatibility *)
Notation Zmax_case := Z.max_case (compat "8.3").
Notation Zmax_case_strong := Z.max_case_strong (compat "8.3").
Notation Zmax_right := Z.max_r (compat "8.3").
Notation Zle_max_l := Z.le_max_l (compat "8.3").
Notation Zle_max_r := Z.le_max_r (compat "8.3").
Notation Zmax_lub := Z.max_lub (compat "8.3").
Notation Zmax_lub_lt := Z.max_lub_lt (compat "8.3").
Notation Zle_max_compat_r := Z.max_le_compat_r (compat "8.3").
Notation Zle_max_compat_l := Z.max_le_compat_l (compat "8.3").
Notation Zmax_idempotent := Z.max_id (compat "8.3").
Notation Zmax_n_n := Z.max_id (compat "8.3").
Notation Zmax_comm := Z.max_comm (compat "8.3").
Notation Zmax_assoc := Z.max_assoc (compat "8.3").
Notation Zmax_irreducible_dec := Z.max_dec (compat "8.3").
Notation Zmax_le_prime := Z.max_le (compat "8.3").
Notation Zsucc_max_distr := Z.succ_max_distr (compat "8.3").
Notation Zmax_SS := Z.succ_max_distr (compat "8.3").
Notation Zplus_max_distr_l := Z.add_max_distr_l (compat "8.3").
Notation Zplus_max_distr_r := Z.add_max_distr_r (compat "8.3").
Notation Zmax_plus := Z.add_max_distr_r (compat "8.3").
Notation Zmax1 := Z.le_max_l (compat "8.3").
Notation Zmax2 := Z.le_max_r (compat "8.3").
Notation Zmax_irreducible_inf := Z.max_dec (compat "8.3").
Notation Zmax_le_prime_inf := Z.max_le (compat "8.3").
Notation Zpos_max := Pos2Z.inj_max (compat "8.3").
Notation Zpos_minus := Pos2Z.inj_sub_max (compat "8.3").
(** Slightly different lemmas *)
Lemma Zmax_spec x y :
x >= y /\ Z.max x y = x \/ x < y /\ Z.max x y = y.
Proof.
Z.swap_greater. destruct (Z.max_spec x y); auto.
Qed.
Lemma Zmax_left n m : n>=m -> Z.max n m = n.
Proof. Z.swap_greater. apply Z.max_l. Qed.
Lemma Zpos_max_1 p : Z.max 1 (Z.pos p) = Z.pos p.
Proof.
now destruct p.
Qed.
|