aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zmax.v
blob: b52da85638bafe7e078d540f047d6e9fd118b4fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** THIS FILE IS DEPRECATED. *)

Require Export BinInt Zcompare Zorder.

Local Open Scope Z_scope.

(** Definition [Z.max] is now [BinInt.Z.max]. *)

(** Exact compatibility *)

Notation Zmax_case := Z.max_case (compat "8.3").
Notation Zmax_case_strong := Z.max_case_strong (compat "8.3").
Notation Zmax_right := Z.max_r (compat "8.3").
Notation Zle_max_l := Z.le_max_l (compat "8.3").
Notation Zle_max_r := Z.le_max_r (compat "8.3").
Notation Zmax_lub := Z.max_lub (compat "8.3").
Notation Zmax_lub_lt := Z.max_lub_lt (compat "8.3").
Notation Zle_max_compat_r := Z.max_le_compat_r (compat "8.3").
Notation Zle_max_compat_l := Z.max_le_compat_l (compat "8.3").
Notation Zmax_idempotent := Z.max_id (compat "8.3").
Notation Zmax_n_n := Z.max_id (compat "8.3").
Notation Zmax_comm := Z.max_comm (compat "8.3").
Notation Zmax_assoc := Z.max_assoc (compat "8.3").
Notation Zmax_irreducible_dec := Z.max_dec (compat "8.3").
Notation Zmax_le_prime := Z.max_le (compat "8.3").
Notation Zsucc_max_distr := Z.succ_max_distr (compat "8.3").
Notation Zmax_SS := Z.succ_max_distr (compat "8.3").
Notation Zplus_max_distr_l := Z.add_max_distr_l (compat "8.3").
Notation Zplus_max_distr_r := Z.add_max_distr_r (compat "8.3").
Notation Zmax_plus := Z.add_max_distr_r (compat "8.3").
Notation Zmax1 := Z.le_max_l (compat "8.3").
Notation Zmax2 := Z.le_max_r (compat "8.3").
Notation Zmax_irreducible_inf := Z.max_dec (compat "8.3").
Notation Zmax_le_prime_inf := Z.max_le (compat "8.3").
Notation Zpos_max := Pos2Z.inj_max (compat "8.3").
Notation Zpos_minus := Pos2Z.inj_sub_max (compat "8.3").

(** Slightly different lemmas *)

Lemma Zmax_spec x y :
  x >= y /\ Z.max x y = x  \/ x < y /\ Z.max x y = y.
Proof.
 Z.swap_greater. destruct (Z.max_spec x y); auto.
Qed.

Lemma Zmax_left n m : n>=m -> Z.max n m = n.
Proof. Z.swap_greater. apply Z.max_l. Qed.

Lemma Zpos_max_1 p : Z.max 1 (Z.pos p) = Z.pos p.
Proof.
 now destruct p.
Qed.