1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import Arith_base.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Open Local Scope Z_scope.
(******************************************)
(** Maximum of two binary integer numbers *)
Definition Zmax m n :=
match m ?= n with
| Eq | Gt => m
| Lt => n
end.
(** * Characterization of maximum on binary integer numbers *)
Lemma Zmax_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmax n m).
Proof.
intros n m P H1 H2; unfold Zmax in |- *; case (n ?= m); auto with arith.
Qed.
Lemma Zmax_case_strong : forall (n m:Z) (P:Z -> Type),
(m<=n -> P n) -> (n<=m -> P m) -> P (Zmax n m).
Proof.
intros n m P H1 H2; unfold Zmax, Zle, Zge in *.
rewrite <- (Zcompare_antisym n m) in H1.
destruct (n ?= m); (apply H1|| apply H2); discriminate.
Qed.
Lemma Zmax_spec : forall x y:Z,
x >= y /\ Zmax x y = x \/
x < y /\ Zmax x y = y.
Proof.
intros; unfold Zmax, Zlt, Zge.
destruct (Zcompare x y); [ left | right | left ]; split; auto; discriminate.
Qed.
Lemma Zmax_left : forall n m:Z, n>=m -> Zmax n m = n.
Proof.
intros n m; unfold Zmax, Zge; destruct (n ?= m); auto.
intro H; elim H; auto.
Qed.
Lemma Zmax_right : forall n m:Z, n<=m -> Zmax n m = m.
Proof.
intros n m; unfold Zmax, Zle.
generalize (Zcompare_Eq_eq n m).
destruct (n ?= m); auto.
intros _ H; elim H; auto.
Qed.
(** * Least upper bound properties of max *)
Lemma Zle_max_l : forall n m:Z, n <= Zmax n m.
Proof.
intros; apply Zmax_case_strong; auto with zarith.
Qed.
Notation Zmax1 := Zle_max_l (only parsing).
Lemma Zle_max_r : forall n m:Z, m <= Zmax n m.
Proof.
intros; apply Zmax_case_strong; auto with zarith.
Qed.
Notation Zmax2 := Zle_max_r (only parsing).
Lemma Zmax_lub : forall n m p:Z, n <= p -> m <= p -> Zmax n m <= p.
Proof.
intros; apply Zmax_case; assumption.
Qed.
(** * Semi-lattice properties of max *)
Lemma Zmax_idempotent : forall n:Z, Zmax n n = n.
Proof.
intros; apply Zmax_case; auto.
Qed.
Lemma Zmax_comm : forall n m:Z, Zmax n m = Zmax m n.
Proof.
intros; do 2 apply Zmax_case_strong; intros;
apply Zle_antisym; auto with zarith.
Qed.
Lemma Zmax_assoc : forall n m p:Z, Zmax n (Zmax m p) = Zmax (Zmax n m) p.
Proof.
intros n m p; repeat apply Zmax_case_strong; intros;
reflexivity || (try apply Zle_antisym); eauto with zarith.
Qed.
(** * Additional properties of max *)
Lemma Zmax_irreducible_inf : forall n m:Z, Zmax n m = n \/ Zmax n m = m.
Proof.
intros; apply Zmax_case; auto.
Qed.
Lemma Zmax_le_prime_inf : forall n m p:Z, p <= Zmax n m -> p <= n \/ p <= m.
Proof.
intros n m p; apply Zmax_case; auto.
Qed.
(** * Operations preserving max *)
Lemma Zsucc_max_distr :
forall n m:Z, Zsucc (Zmax n m) = Zmax (Zsucc n) (Zsucc m).
Proof.
intros n m; unfold Zmax in |- *; rewrite (Zcompare_succ_compat n m);
elim_compare n m; intros E; rewrite E; auto with arith.
Qed.
Lemma Zplus_max_distr_r : forall n m p:Z, Zmax (n + p) (m + p) = Zmax n m + p.
Proof.
intros x y n; unfold Zmax in |- *.
rewrite (Zplus_comm x n); rewrite (Zplus_comm y n);
rewrite (Zcompare_plus_compat x y n).
case (x ?= y); apply Zplus_comm.
Qed.
(** * Maximum and Zpos *)
Lemma Zpos_max : forall p q, Zpos (Pmax p q) = Zmax (Zpos p) (Zpos q).
Proof.
intros; unfold Zmax, Pmax; simpl; generalize (Pcompare_Eq_eq p q).
destruct Pcompare; auto.
intro H; rewrite H; auto.
Qed.
Lemma Zpos_max_1 : forall p, Zmax 1 (Zpos p) = Zpos p.
Proof.
intros; unfold Zmax; simpl; destruct p; simpl; auto.
Qed.
(** * Characterization of Pminus in term of Zminus and Zmax *)
Lemma Zpos_minus : forall p q, Zpos (Pminus p q) = Zmax 1 (Zpos p - Zpos q).
Proof.
intros.
case_eq (Pcompare p q Eq).
intros H; rewrite (Pcompare_Eq_eq _ _ H).
rewrite Zminus_diag.
unfold Zmax; simpl.
unfold Pminus; rewrite Pminus_mask_diag; auto.
intros; rewrite Pminus_Lt; auto.
destruct (Zmax_spec 1 (Zpos p - Zpos q)) as [(H1,H2)|(H1,H2)]; auto.
elimtype False; clear H2.
assert (H1':=Zlt_trans 0 1 _ Zlt_0_1 H1).
generalize (Zlt_0_minus_lt _ _ H1').
unfold Zlt; simpl.
rewrite (ZC2 _ _ H); intro; discriminate.
intros; simpl; rewrite H.
symmetry; apply Zpos_max_1.
Qed.
|