aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zdiv.v
blob: 66e275b61b1f7118d923fe67475f6beafa6b404b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

(* Contribution by Claude Marché and Xavier Urbain *)

(** Euclidean Division

    Defines first of function that allows Coq to normalize.
    Then only after proves the main required property.
*)

Require Export ZArith_base.
Require Import Zbool Omega ZArithRing Zcomplements Setoid Morphisms.
Require ZDivFloor.
Open Local Scope Z_scope.

(** * Definitions of Euclidian operations *)

(** Euclidean division of a positive by a integer
    (that is supposed to be positive).

    Total function than returns an arbitrary value when
    divisor is not positive

*)

Unboxed Fixpoint Zdiv_eucl_POS (a:positive) (b:Z) : Z * Z :=
  match a with
    | xH => if Zge_bool b 2 then (0, 1) else (1, 0)
    | xO a' =>
      let (q, r) := Zdiv_eucl_POS a' b in
	let r' := 2 * r in
	  if Zgt_bool b r' then (2 * q, r') else (2 * q + 1, r' - b)
    | xI a' =>
      let (q, r) := Zdiv_eucl_POS a' b in
	let r' := 2 * r + 1 in
	  if Zgt_bool b r' then (2 * q, r') else (2 * q + 1, r' - b)
  end.


(** Euclidean division of integers.

    Total function than returns (0,0) when dividing by 0.
*)

(**

  The pseudo-code is:

  if b = 0 : (0,0)

  if b <> 0 and a = 0 : (0,0)

  if b > 0 and a < 0 : let (q,r) = div_eucl_pos (-a) b in
                       if r = 0 then (-q,0) else (-(q+1),b-r)

  if b < 0 and a < 0 : let (q,r) = div_eucl (-a) (-b) in (q,-r)

  if b < 0 and a > 0 : let (q,r) = div_eucl a (-b) in
                       if r = 0 then (-q,0) else (-(q+1),b+r)

  In other word, when b is non-zero, q is chosen to be the greatest integer
  smaller or equal to a/b. And sgn(r)=sgn(b) and |r| < |b| (at least when
  r is not null).
*)

(* Nota: At least two others conventions also exist for euclidean division.
   They all satify the equation a=b*q+r, but differ on the choice of (q,r)
   on negative numbers.

   * Ocaml uses Round-Toward-Zero division: (-a)/b = a/(-b) = -(a/b).
     Hence (-a) mod b = - (a mod b)
           a mod (-b) = a mod b
     And: |r| < |b| and sgn(r) = sgn(a)  (notice the a here instead of b).

   * Another solution is to always pick a non-negative remainder:
     a=b*q+r with 0 <= r < |b|
*)

Definition Zdiv_eucl (a b:Z) : Z * Z :=
  match a, b with
    | Z0, _ => (0, 0)
    | _, Z0 => (0, 0)
    | Zpos a', Zpos _ => Zdiv_eucl_POS a' b
    | Zneg a', Zpos _ =>
      let (q, r) := Zdiv_eucl_POS a' b in
	match r with
	  | Z0 => (- q, 0)
	  | _ => (- (q + 1), b - r)
	end
    | Zneg a', Zneg b' => let (q, r) := Zdiv_eucl_POS a' (Zpos b') in (q, - r)
    | Zpos a', Zneg b' =>
      let (q, r) := Zdiv_eucl_POS a' (Zpos b') in
	match r with
	  | Z0 => (- q, 0)
	  | _ => (- (q + 1), b + r)
	end
  end.


(** Division and modulo are projections of [Zdiv_eucl] *)

Definition Zdiv (a b:Z) : Z := let (q, _) := Zdiv_eucl a b in q.

Definition Zmod (a b:Z) : Z := let (_, r) := Zdiv_eucl a b in r.

(** Syntax *)

Infix "/" := Zdiv : Z_scope.
Infix "mod" := Zmod (at level 40, no associativity) : Z_scope.

(* Tests:

Eval compute in (Zdiv_eucl 7 3).

Eval compute in (Zdiv_eucl (-7) 3).

Eval compute in (Zdiv_eucl 7 (-3)).

Eval compute in (Zdiv_eucl (-7) (-3)).

*)


(** * Main division theorem *)

(** First a lemma for two positive arguments *)

Lemma Z_div_mod_POS :
  forall b:Z,
    b > 0 ->
    forall a:positive,
      let (q, r) := Zdiv_eucl_POS a b in Zpos a = b * q + r /\ 0 <= r < b.
Proof.
simple induction a; cbv beta iota delta [Zdiv_eucl_POS] in |- *;
  fold Zdiv_eucl_POS in |- *; cbv zeta.

intro p; case (Zdiv_eucl_POS p b); intros q r [H0 H1].
generalize (Zgt_cases b (2 * r + 1)).
case (Zgt_bool b (2 * r + 1));
 (rewrite BinInt.Zpos_xI; rewrite H0; split; [ ring | omega ]).

intros p; case (Zdiv_eucl_POS p b); intros q r [H0 H1].
generalize (Zgt_cases b (2 * r)).
case (Zgt_bool b (2 * r)); rewrite BinInt.Zpos_xO;
 change (Zpos (xO p)) with (2 * Zpos p) in |- *; rewrite H0;
 (split; [ ring | omega ]).

generalize (Zge_cases b 2).
case (Zge_bool b 2); (intros; split; [ try ring | omega ]).
omega.
Qed.

(** Then the usual situation of a positive [b] and no restriction on [a] *)

Theorem Z_div_mod :
  forall a b:Z,
    b > 0 -> let (q, r) := Zdiv_eucl a b in a = b * q + r /\ 0 <= r < b.
Proof.
  intros a b; case a; case b; try (simpl in |- *; intros; omega).
  unfold Zdiv_eucl in |- *; intros; apply Z_div_mod_POS; trivial.

  intros; discriminate.

  intros.
  generalize (Z_div_mod_POS (Zpos p) H p0).
  unfold Zdiv_eucl in |- *.
  case (Zdiv_eucl_POS p0 (Zpos p)).
  intros z z0.
  case z0.

  intros [H1 H2].
  split; trivial.
  change (Zneg p0) with (- Zpos p0); rewrite H1; ring.

  intros p1 [H1 H2].
  split; trivial.
  change (Zneg p0) with (- Zpos p0); rewrite H1; ring.
  generalize (Zorder.Zgt_pos_0 p1); omega.

  intros p1 [H1 H2].
  split; trivial.
  change (Zneg p0) with (- Zpos p0); rewrite H1; ring.
  generalize (Zorder.Zlt_neg_0 p1); omega.

  intros; discriminate.
Qed.

(** For stating the fully general result, let's give a short name
    to the condition on the remainder. *)

Definition Remainder r b :=  0 <= r < b \/ b < r <= 0.

(** Another equivalent formulation: *)

Definition Remainder_alt r b :=  Zabs r < Zabs b /\ Zsgn r <> - Zsgn b.

(* In the last formulation, [ Zsgn r <> - Zsgn b ] is less nice than saying
    [ Zsgn r = Zsgn b ], but at least it works even when [r] is null. *)

Lemma Remainder_equiv : forall r b, Remainder r b <-> Remainder_alt r b.
Proof.
 intros; unfold Remainder, Remainder_alt; omega with *.
Qed.

Hint Unfold Remainder.

(** Now comes the fully general result about Euclidean division. *)

Theorem Z_div_mod_full :
  forall a b:Z,
    b <> 0 -> let (q, r) := Zdiv_eucl a b in a = b * q + r /\ Remainder r b.
Proof.
  destruct b as [|b|b].
  (* b = 0 *)
  intro H; elim H; auto.
  (* b > 0 *)
  intros _.
  assert (Zpos b > 0) by auto with zarith.
  generalize (Z_div_mod a (Zpos b) H).
  destruct Zdiv_eucl as (q,r); intuition; simpl; auto.
  (* b < 0 *)
  intros _.
  assert (Zpos b > 0) by auto with zarith.
  generalize (Z_div_mod a (Zpos b) H).
  unfold Remainder.
  destruct a as [|a|a].
  (* a = 0 *)
  simpl; intuition.
  (* a > 0 *)
  unfold Zdiv_eucl; destruct Zdiv_eucl_POS as (q,r).
  destruct r as [|r|r]; [ | | omega with *].
  rewrite <- Zmult_opp_comm; simpl Zopp; intuition.
  rewrite <- Zmult_opp_comm; simpl Zopp.
  rewrite Zmult_plus_distr_r; omega with *.
  (* a < 0 *)
  unfold Zdiv_eucl.
  generalize (Z_div_mod_POS (Zpos b) H a).
  destruct Zdiv_eucl_POS as (q,r).
  destruct r as [|r|r]; change (Zneg b) with (-Zpos b).
  rewrite Zmult_opp_comm; omega with *.
  rewrite <- Zmult_opp_comm, Zmult_plus_distr_r;
   repeat rewrite Zmult_opp_comm; omega.
  rewrite Zmult_opp_comm; omega with *.
Qed.

(** The same results as before, stated separately in terms of Zdiv and Zmod *)

Lemma Z_mod_remainder : forall a b:Z, b<>0 -> Remainder (a mod b) b.
Proof.
  unfold Zmod; intros a b Hb; generalize (Z_div_mod_full a b Hb); auto.
  destruct Zdiv_eucl; tauto.
Qed.

Lemma Z_mod_lt : forall a b:Z, b > 0 -> 0 <= a mod b < b.
Proof.
  unfold Zmod; intros a b Hb; generalize (Z_div_mod a b Hb).
  destruct Zdiv_eucl; tauto.
Qed.

Lemma Z_mod_neg : forall a b:Z, b < 0 -> b < a mod b <= 0.
Proof.
  unfold Zmod; intros a b Hb.
  assert (Hb' : b<>0) by (auto with zarith).
  generalize (Z_div_mod_full a b Hb').
  destruct Zdiv_eucl.
  unfold Remainder; intuition.
Qed.

Lemma Z_div_mod_eq_full : forall a b:Z, b <> 0 -> a = b*(a/b) + (a mod b).
Proof.
  unfold Zdiv, Zmod; intros a b Hb; generalize (Z_div_mod_full a b Hb).
  destruct Zdiv_eucl; tauto.
Qed.

Lemma Z_div_mod_eq : forall a b:Z, b > 0 -> a = b*(a/b) + (a mod b).
Proof.
  intros; apply Z_div_mod_eq_full; auto with zarith.
Qed.

Lemma Zmod_eq_full : forall a b:Z, b<>0 -> a mod b = a - (a/b)*b.
Proof.
  intros.
  rewrite <- Zeq_plus_swap, Zplus_comm, Zmult_comm; symmetry.
  apply Z_div_mod_eq_full; auto.
Qed.

Lemma Zmod_eq : forall a b:Z, b>0 -> a mod b = a - (a/b)*b.
Proof.
  intros.
  rewrite <- Zeq_plus_swap, Zplus_comm, Zmult_comm; symmetry.
  apply Z_div_mod_eq; auto.
Qed.

(** We know enough to prove that [Zdiv] and [Zmod] are instances of
    one of the abstract Euclidean divisions of Numbers.
    We hence benefit from generic results about this abstract division. *)

Module Z.

 Definition div := Zdiv.
 Definition modulo := Zmod.
 Local Obligation Tactic := simpl_relation.
 Program Instance div_wd : Proper (eq==>eq==>eq) div.
 Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.

 Definition div_mod := Z_div_mod_eq_full.
 Definition mod_pos_bound : forall a b:Z, 0<b -> 0<=a mod b<b.
 Proof. intros; apply Z_mod_lt; auto with zarith. Qed.
 Definition mod_neg_bound := Z_mod_neg.

 Include ZBinary.Z <+ ZDivFloor.ZDivPropFunct.

End Z.

(** Existence theorem *)

Theorem Zdiv_eucl_exist : forall (b:Z)(Hb:b>0)(a:Z),
 {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < b}.
Proof.
  intros b Hb a.
  exists (Zdiv_eucl a b).
  exact (Z_div_mod a b Hb).
Qed.

Implicit Arguments Zdiv_eucl_exist.


(** Uniqueness theorems *)

Theorem Zdiv_mod_unique :
 forall b q1 q2 r1 r2:Z,
  0 <= r1 < Zabs b -> 0 <= r2 < Zabs b ->
  b*q1+r1 = b*q2+r2 -> q1=q2 /\ r1=r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 H.
destruct (Z_eq_dec q1 q2) as [Hq|Hq].
split; trivial.
rewrite Hq in H; omega.
elim (Zlt_not_le (Zabs (r2 - r1)) (Zabs b)).
omega with *.
replace (r2-r1) with (b*(q1-q2)) by (rewrite Zmult_minus_distr_l; omega).
replace (Zabs b) with ((Zabs b)*1) by ring.
rewrite Zabs_Zmult.
apply Zmult_le_compat_l; auto with *.
omega with *.
Qed.

Theorem Zdiv_mod_unique_2 :
 forall b q1 q2 r1 r2:Z,
  Remainder r1 b -> Remainder r2 b ->
  b*q1+r1 = b*q2+r2 -> q1=q2 /\ r1=r2.
Proof. exact Z.div_mod_unique. Qed.

Theorem Zdiv_unique_full:
 forall a b q r, Remainder r b ->
   a = b*q + r -> q = a/b.
Proof. exact Z.div_unique. Qed.

Theorem Zdiv_unique:
 forall a b q r, 0 <= r < b ->
   a = b*q + r -> q = a/b.
Proof. intros; eapply Zdiv_unique_full; eauto. Qed.

Theorem Zmod_unique_full:
 forall a b q r, Remainder r b ->
  a = b*q + r ->  r = a mod b.
Proof. exact Z.mod_unique. Qed.

Theorem Zmod_unique:
 forall a b q r, 0 <= r < b ->
  a = b*q + r -> r = a mod b.
Proof. intros; eapply Zmod_unique_full; eauto. Qed.

(** * Basic values of divisions and modulo. *)

Lemma Zmod_0_l: forall a, 0 mod a = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma Zmod_0_r: forall a, a mod 0 = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma Zdiv_0_l: forall a, 0/a = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma Zdiv_0_r: forall a, a/0 = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Ltac zero_or_not a :=
  destruct (Z_eq_dec a 0);
  [subst; rewrite ?Zmod_0_l, ?Zdiv_0_l, ?Zmod_0_r, ?Zdiv_0_r;
   auto with zarith|].

Lemma Zmod_1_r: forall a, a mod 1 = 0.
Proof. intros. zero_or_not a. apply Z.mod_1_r. Qed.

Lemma Zdiv_1_r: forall a, a/1 = a.
Proof. intros. zero_or_not a. apply Z.div_1_r. Qed.

Hint Resolve Zmod_0_l Zmod_0_r Zdiv_0_l Zdiv_0_r Zdiv_1_r Zmod_1_r
 : zarith.

Lemma Zdiv_1_l: forall a, 1 < a -> 1/a = 0.
Proof. exact Z.div_1_l. Qed.

Lemma Zmod_1_l: forall a, 1 < a ->  1 mod a = 1.
Proof. exact Z.mod_1_l. Qed.

Lemma Z_div_same_full : forall a:Z, a<>0 -> a/a = 1.
Proof. exact Z.div_same. Qed.

Lemma Z_mod_same_full : forall a, a mod a = 0.
Proof. intros. zero_or_not a. apply Z.mod_same; auto. Qed.

Lemma Z_mod_mult : forall a b, (a*b) mod b = 0.
Proof. intros. zero_or_not b. apply Z.mod_mul. auto. Qed.

Lemma Z_div_mult_full : forall a b:Z, b <> 0 -> (a*b)/b = a.
Proof. exact Z.div_mul. Qed.

(** * Order results about Zmod and Zdiv *)

(* Division of positive numbers is positive. *)

Lemma Z_div_pos: forall a b, b > 0 -> 0 <= a -> 0 <= a/b.
Proof. intros. apply Z.div_pos; auto with zarith. Qed.

Lemma Z_div_ge0: forall a b, b > 0 -> a >= 0 -> a/b >=0.
Proof.
  intros; generalize (Z_div_pos a b H); auto with zarith.
Qed.

(** As soon as the divisor is greater or equal than 2,
    the division is strictly decreasing. *)

Lemma Z_div_lt : forall a b:Z, b >= 2 -> a > 0 -> a/b < a.
Proof. intros. apply Z.div_lt; auto with zarith. Qed.

(** A division of a small number by a bigger one yields zero. *)

Theorem Zdiv_small: forall a b, 0 <= a < b -> a/b = 0.
Proof. exact Z.div_small. Qed.

(** Same situation, in term of modulo: *)

Theorem Zmod_small: forall a n, 0 <= a < n -> a mod n = a.
Proof. exact Z.mod_small. Qed.

(** [Zge] is compatible with a positive division. *)

Lemma Z_div_ge : forall a b c:Z, c > 0 -> a >= b -> a/c >= b/c.
Proof. intros. apply Zle_ge. apply Z.div_le_mono; auto with zarith. Qed.

(** Same, with [Zle]. *)

Lemma Z_div_le : forall a b c:Z, c > 0 -> a <= b -> a/c <= b/c.
Proof. intros. apply Z.div_le_mono; auto with zarith. Qed.

(** With our choice of division, rounding of (a/b) is always done toward bottom: *)

Lemma Z_mult_div_ge : forall a b:Z, b > 0 -> b*(a/b) <= a.
Proof. intros. apply Z.mul_div_le; auto with zarith. Qed.

Lemma Z_mult_div_ge_neg : forall a b:Z, b < 0 -> b*(a/b) >= a.
Proof. intros. apply Zle_ge. apply Z.mul_div_ge; auto with zarith. Qed.

(** The previous inequalities are exact iff the modulo is zero. *)

Lemma Z_div_exact_full_1 : forall a b:Z, a = b*(a/b) -> a mod b = 0.
Proof. intros a b. zero_or_not b. rewrite Z.div_exact; auto. Qed.

Lemma Z_div_exact_full_2 : forall a b:Z, b <> 0 -> a mod b = 0 -> a = b*(a/b).
Proof. intros; rewrite Z.div_exact; auto. Qed.

(** A modulo cannot grow beyond its starting point. *)

Theorem Zmod_le: forall a b, 0 < b -> 0 <= a -> a mod b <= a.
Proof. intros. apply Z.mod_le; auto. Qed.

(** Some additionnal inequalities about Zdiv. *)

Theorem Zdiv_lt_upper_bound:
  forall a b q, 0 < b -> a < q*b -> a/b < q.
Proof. intros a b q; rewrite Zmult_comm; apply Z.div_lt_upper_bound. Qed.

Theorem Zdiv_le_upper_bound:
  forall a b q, 0 < b -> a <= q*b -> a/b <= q.
Proof. intros a b q; rewrite Zmult_comm; apply Z.div_le_upper_bound. Qed.

Theorem Zdiv_le_lower_bound:
  forall a b q, 0 < b -> q*b <= a -> q <= a/b.
Proof. intros a b q; rewrite Zmult_comm; apply Z.div_le_lower_bound. Qed.

(** A division of respect opposite monotonicity for the divisor *)

Lemma Zdiv_le_compat_l: forall p q r, 0 <= p -> 0 < q < r ->
    p / r <= p / q.
Proof. intros; apply Z.div_le_compat_l; auto with zarith. Qed.

Theorem Zdiv_sgn: forall a b,
  0 <= Zsgn (a/b) * Zsgn a * Zsgn b.
Proof.
  destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith;
  generalize (Z_div_pos (Zpos a) (Zpos b)); unfold Zdiv, Zdiv_eucl;
  destruct Zdiv_eucl_POS as (q,r); destruct r; omega with *.
Qed.

(** * Relations between usual operations and Zmod and Zdiv *)

Lemma Z_mod_plus_full : forall a b c:Z, (a + b * c) mod c = a mod c.
Proof. intros. zero_or_not c. apply Z.mod_add; auto. Qed.

Lemma Z_div_plus_full : forall a b c:Z, c <> 0 -> (a + b * c) / c = a / c + b.
Proof. exact Z.div_add. Qed.

Theorem Z_div_plus_full_l: forall a b c : Z, b <> 0 -> (a * b + c) / b = a + c / b.
Proof. exact Z.div_add_l. Qed.

(** [Zopp] and [Zdiv], [Zmod].
    Due to the choice of convention for our Euclidean division,
    some of the relations about [Zopp] and divisions are rather complex. *)

Lemma Zdiv_opp_opp : forall a b:Z, (-a)/(-b) = a/b.
Proof. intros. zero_or_not b. apply Z.div_opp_opp; auto. Qed.

Lemma Zmod_opp_opp : forall a b:Z, (-a) mod (-b) = - (a mod b).
Proof. intros. zero_or_not b. apply Z.mod_opp_opp; auto. Qed.

Lemma Z_mod_zero_opp_full : forall a b:Z, a mod b = 0 -> (-a) mod b = 0.
Proof. intros. zero_or_not b. apply Z.mod_opp_l_z; auto. Qed.

Lemma Z_mod_nz_opp_full : forall a b:Z, a mod b <> 0 ->
 (-a) mod b = b - (a mod b).
Proof. intros. zero_or_not b. apply Z.mod_opp_l_nz; auto. Qed.

Lemma Z_mod_zero_opp_r : forall a b:Z, a mod b = 0 -> a mod (-b) = 0.
Proof. intros. zero_or_not b. apply Z.mod_opp_r_z; auto. Qed.

Lemma Z_mod_nz_opp_r : forall a b:Z, a mod b <> 0 ->
 a mod (-b) = (a mod b) - b.
Proof. intros. zero_or_not b. apply Z.mod_opp_r_nz; auto. Qed.

Lemma Z_div_zero_opp_full : forall a b:Z, a mod b = 0 -> (-a)/b = -(a/b).
Proof. intros. zero_or_not b. apply Z.div_opp_l_z; auto. Qed.

Lemma Z_div_nz_opp_full : forall a b:Z, a mod b <> 0 ->
 (-a)/b = -(a/b)-1.
Proof. intros a b. zero_or_not b. intros; rewrite Z.div_opp_l_nz; auto. Qed.

Lemma Z_div_zero_opp_r : forall a b:Z, a mod b = 0 -> a/(-b) = -(a/b).
Proof. intros. zero_or_not b. apply Z.div_opp_r_z; auto. Qed.

Lemma Z_div_nz_opp_r : forall a b:Z, a mod b <> 0 ->
 a/(-b) = -(a/b)-1.
Proof. intros a b. zero_or_not b. intros; rewrite Z.div_opp_r_nz; auto. Qed.

(** Cancellations. *)

Lemma Zdiv_mult_cancel_r : forall a b c:Z,
 c <> 0 -> (a*c)/(b*c) = a/b.
Proof. intros. zero_or_not b. apply Z.div_mul_cancel_r; auto. Qed.

Lemma Zdiv_mult_cancel_l : forall a b c:Z,
 c<>0 -> (c*a)/(c*b) = a/b.
Proof.
 intros. rewrite (Zmult_comm c b); zero_or_not b.
 rewrite (Zmult_comm b c). apply Z.div_mul_cancel_l; auto.
Qed.

Lemma Zmult_mod_distr_l: forall a b c,
  (c*a) mod (c*b) = c * (a mod b).
Proof.
 intros. zero_or_not c. rewrite (Zmult_comm c b); zero_or_not b.
 rewrite (Zmult_comm b c). apply Z.mul_mod_distr_l; auto.
Qed.

Lemma Zmult_mod_distr_r: forall a b c,
  (a*c) mod (b*c) = (a mod b) * c.
Proof.
 intros. zero_or_not b. rewrite (Zmult_comm b c); zero_or_not c.
 rewrite (Zmult_comm c b). apply Z.mul_mod_distr_r; auto.
Qed.

(** Operations modulo. *)

Theorem Zmod_mod: forall a n, (a mod n) mod n = a mod n.
Proof. intros. zero_or_not n. apply Z.mod_mod; auto. Qed.

Theorem Zmult_mod: forall a b n,
 (a * b) mod n = ((a mod n) * (b mod n)) mod n.
Proof. intros. zero_or_not n. apply Z.mul_mod; auto. Qed.

Theorem Zplus_mod: forall a b n,
 (a + b) mod n = (a mod n + b mod n) mod n.
Proof. intros. zero_or_not n. apply Z.add_mod; auto. Qed.

Theorem Zminus_mod: forall a b n,
 (a - b) mod n = (a mod n - b mod n) mod n.
Proof.
  intros.
  replace (a - b) with (a + (-1) * b); auto with zarith.
  replace (a mod n - b mod n) with (a mod n + (-1) * (b mod n)); auto with zarith.
  rewrite Zplus_mod.
  rewrite Zmult_mod.
  rewrite Zplus_mod with (b:=(-1) * (b mod n)).
  rewrite Zmult_mod.
  rewrite Zmult_mod with (b:= b mod n).
  repeat rewrite Zmod_mod; auto.
Qed.

Lemma Zplus_mod_idemp_l: forall a b n, (a mod n + b) mod n = (a + b) mod n.
Proof.
  intros; rewrite Zplus_mod, Zmod_mod, <- Zplus_mod; auto.
Qed.

Lemma Zplus_mod_idemp_r: forall a b n, (b + a mod n) mod n = (b + a) mod n.
Proof.
  intros; rewrite Zplus_mod, Zmod_mod, <- Zplus_mod; auto.
Qed.

Lemma Zminus_mod_idemp_l: forall a b n, (a mod n - b) mod n = (a - b) mod n.
Proof.
  intros; rewrite Zminus_mod, Zmod_mod, <- Zminus_mod; auto.
Qed.

Lemma Zminus_mod_idemp_r: forall a b n, (a - b mod n) mod n = (a - b) mod n.
Proof.
  intros; rewrite Zminus_mod, Zmod_mod, <- Zminus_mod; auto.
Qed.

Lemma Zmult_mod_idemp_l: forall a b n, (a mod n * b) mod n = (a * b) mod n.
Proof.
  intros; rewrite Zmult_mod, Zmod_mod, <- Zmult_mod; auto.
Qed.

Lemma Zmult_mod_idemp_r: forall a b n, (b * (a mod n)) mod n = (b * a) mod n.
Proof.
  intros; rewrite Zmult_mod, Zmod_mod, <- Zmult_mod; auto.
Qed.

(** For a specific number N, equality modulo N is hence a nice setoid
   equivalence, compatible with [+], [-] and [*]. *)

Definition eqm N a b := (a mod N = b mod N).

Lemma eqm_refl N : forall a, (eqm N) a a.
Proof. unfold eqm; auto. Qed.

Lemma eqm_sym N : forall a b, (eqm N) a b -> (eqm N) b a.
Proof. unfold eqm; auto. Qed.

Lemma eqm_trans N : forall a b c,
  (eqm N) a b -> (eqm N) b c -> (eqm N) a c.
Proof. unfold eqm; eauto with *. Qed.

Add Parametric Relation N : Z (eqm N)
  reflexivity proved by (eqm_refl N)
  symmetry proved by (eqm_sym N)
  transitivity proved by (eqm_trans N) as eqm_setoid.

Add Parametric Morphism N : Zplus
  with signature (eqm N) ==> (eqm N) ==> (eqm N) as Zplus_eqm.
Proof.
  unfold eqm; intros; rewrite Zplus_mod, H, H0, <- Zplus_mod; auto.
Qed.

Add Parametric Morphism N : Zminus
  with signature (eqm N) ==> (eqm N) ==> (eqm N) as Zminus_eqm.
Proof.
  unfold eqm; intros; rewrite Zminus_mod, H, H0, <- Zminus_mod; auto.
Qed.

Add Parametric Morphism N : Zmult
  with signature (eqm N) ==> (eqm N) ==> (eqm N) as Zmult_eqm.
Proof.
  unfold eqm; intros; rewrite Zmult_mod, H, H0, <- Zmult_mod; auto.
Qed.

Add Parametric Morphism N : Zopp
  with signature (eqm N) ==> (eqm N) as Zopp_eqm.
Proof.
  intros; change ((eqm N) (-x) (-y)) with ((eqm N) (0-x) (0-y)).
  rewrite H; red; auto.
Qed.

Lemma Zmod_eqm N : forall a, (eqm N) (a mod N) a.
Proof.
  intros; exact (Zmod_mod a N).
Qed.

(* NB: Zmod and Zdiv are not morphisms with respect to eqm.
    For instance, let (==) be (eqm 2). Then we have (3 == 1) but:
    ~ (3 mod 3 == 1 mod 3)
    ~ (1 mod 3 == 1 mod 1)
    ~ (3/3 == 1/3)
    ~ (1/3 == 1/1)
*)

Lemma Zdiv_Zdiv : forall a b c, 0<=b -> 0<=c -> (a/b)/c = a/(b*c).
Proof.
 intros. zero_or_not b. rewrite Zmult_comm. zero_or_not c.
 rewrite Zmult_comm. apply Z.div_div; auto with zarith.
Qed.

(** Unfortunately, the previous result isn't always true on negative numbers.
    For instance: 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) *)

(** A last inequality: *)

Theorem Zdiv_mult_le:
 forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a/b) <= (c*a)/b.
Proof.
 intros. zero_or_not b. apply Z.div_mul_le; auto with zarith. Qed.

(** Zmod is related to divisibility (see more in Znumtheory) *)

Lemma Zmod_divides : forall a b, b<>0 ->
 (a mod b = 0 <-> exists c, a = b*c).
Proof. exact Z.mod_divides. Qed.

(** * Compatibility *)

(** Weaker results kept only for compatibility *)

Lemma Z_mod_same : forall a, a > 0 -> a mod a = 0.
Proof.
  intros; apply Z_mod_same_full.
Qed.

Lemma Z_div_same : forall a, a > 0 -> a/a = 1.
Proof.
  intros; apply Z_div_same_full; auto with zarith.
Qed.

Lemma Z_div_plus : forall a b c:Z, c > 0 -> (a + b * c) / c = a / c + b.
Proof.
  intros; apply Z_div_plus_full; auto with zarith.
Qed.

Lemma Z_div_mult : forall a b:Z, b > 0 -> (a*b)/b = a.
Proof.
  intros; apply Z_div_mult_full; auto with zarith.
Qed.

Lemma Z_mod_plus : forall a b c:Z, c > 0 -> (a + b * c) mod c = a mod c.
Proof.
  intros; apply Z_mod_plus_full; auto with zarith.
Qed.

Lemma Z_div_exact_1 : forall a b:Z, b > 0 -> a = b*(a/b) -> a mod b = 0.
Proof.
  intros; apply Z_div_exact_full_1; auto with zarith.
Qed.

Lemma Z_div_exact_2 : forall a b:Z, b > 0 -> a mod b = 0 -> a = b*(a/b).
Proof.
  intros; apply Z_div_exact_full_2; auto with zarith.
Qed.

Lemma Z_mod_zero_opp : forall a b:Z, b > 0 -> a mod b = 0 -> (-a) mod b = 0.
Proof.
  intros; apply Z_mod_zero_opp_full; auto with zarith.
Qed.

(** * A direct way to compute Zmod *)

Fixpoint Zmod_POS (a : positive) (b : Z) : Z  :=
  match a with
   | xI a' =>
      let r := Zmod_POS a' b in
      let r' := (2 * r + 1) in
      if Zgt_bool b r' then r' else (r' - b)
   | xO a' =>
      let r := Zmod_POS a' b in
      let r' := (2 * r) in
      if Zgt_bool b r' then r' else (r' - b)
   | xH => if Zge_bool b 2 then 1 else 0
  end.

Definition Zmod' a b :=
  match a with
   | Z0 => 0
   | Zpos a' =>
      match b with
       | Z0 => 0
       | Zpos _ => Zmod_POS a' b
       | Zneg b' =>
          let r := Zmod_POS a' (Zpos b') in
          match r  with Z0 =>  0 |  _  =>   b + r end
      end
   | Zneg a' =>
      match b with
       | Z0 => 0
       | Zpos _ =>
          let r := Zmod_POS a' b in
          match r with Z0 =>  0 | _  =>  b - r end
       | Zneg b' => - (Zmod_POS a' (Zpos b'))
      end
  end.


Theorem Zmod_POS_correct: forall a b, Zmod_POS a b = (snd (Zdiv_eucl_POS a b)).
Proof.
  intros a b; elim a; simpl; auto.
  intros p Rec; rewrite  Rec.
  case (Zdiv_eucl_POS p b); intros z1 z2; simpl; auto.
  match goal with |- context [Zgt_bool _ ?X] => case (Zgt_bool b X) end; auto.
  intros p Rec; rewrite  Rec.
  case (Zdiv_eucl_POS p b); intros z1 z2; simpl; auto.
  match goal with |- context [Zgt_bool _ ?X] => case (Zgt_bool b X) end; auto.
  case (Zge_bool b 2); auto.
Qed.

Theorem Zmod'_correct: forall a b, Zmod' a b = Zmod a b.
Proof.
  intros a b; unfold Zmod; case a; simpl; auto.
  intros p; case b; simpl; auto.
  intros p1; refine (Zmod_POS_correct _ _); auto.
  intros p1; rewrite Zmod_POS_correct; auto.
  case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
  intros p; case b; simpl; auto.
  intros p1; rewrite Zmod_POS_correct; auto.
  case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
  intros p1; rewrite Zmod_POS_correct; simpl; auto.
  case (Zdiv_eucl_POS p (Zpos p1)); auto.
Qed.


(** Another convention is possible for division by negative numbers:
    * quotient is always the biggest integer smaller than or equal to a/b
    * remainder is hence always positive or null. *)

Theorem Zdiv_eucl_extended :
  forall b:Z,
    b <> 0 ->
    forall a:Z,
      {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < Zabs b}.
Proof.
  intros b Hb a.
  elim (Z_le_gt_dec 0 b); intro Hb'.
  cut (b > 0); [ intro Hb'' | omega ].
  rewrite Zabs_eq; [ apply Zdiv_eucl_exist; assumption | assumption ].
  cut (- b > 0); [ intro Hb'' | omega ].
  elim (Zdiv_eucl_exist Hb'' a); intros qr.
  elim qr; intros q r Hqr.
  exists (- q, r).
  elim Hqr; intros.
  split.
  rewrite <- Zmult_opp_comm; assumption.
  rewrite Zabs_non_eq; [ assumption | omega ].
Qed.

Implicit Arguments Zdiv_eucl_extended.

(** A third convention: Ocaml.

     See files ZOdiv_def.v and ZOdiv.v.

     Ocaml uses Round-Toward-Zero division: (-a)/b = a/(-b) = -(a/b).
     Hence (-a) mod b = - (a mod b)
           a mod (-b) = a mod b
     And: |r| < |b| and sgn(r) = sgn(a)  (notice the a here instead of b).
*)