1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Binary Integers : results about Zcompare *)
(** Initial author: Pierre Crégut (CNET, Lannion, France *)
(** THIS FILE IS DEPRECATED.
It is now almost entirely made of compatibility formulations
for results already present in BinInt.Z. *)
Require Export BinPos BinInt.
Require Import Lt Gt Plus Mult. (* Useless now, for compatibility only *)
Local Open Scope Z_scope.
(***************************)
(** * Comparison on integers *)
Lemma Zcompare_Gt_Lt_antisym : forall n m:Z, (n ?= m) = Gt <-> (m ?= n) = Lt.
Proof Z.gt_lt_iff.
Lemma Zcompare_antisym n m : CompOpp (n ?= m) = (m ?= n).
Proof eq_sym (Z.compare_antisym n m).
(** * Transitivity of comparison *)
Lemma Zcompare_Lt_trans :
forall n m p:Z, (n ?= m) = Lt -> (m ?= p) = Lt -> (n ?= p) = Lt.
Proof Z.lt_trans.
Lemma Zcompare_Gt_trans :
forall n m p:Z, (n ?= m) = Gt -> (m ?= p) = Gt -> (n ?= p) = Gt.
Proof.
intros n m p. change (n > m -> m > p -> n > p).
Z.swap_greater. intros. now transitivity m.
Qed.
(** * Comparison and opposite *)
Lemma Zcompare_opp n m : (n ?= m) = (- m ?= - n).
Proof.
symmetry. apply Z.compare_opp.
Qed.
(** * Comparison first-order specification *)
Lemma Zcompare_Gt_spec n m : (n ?= m) = Gt -> exists h, n + - m = Zpos h.
Proof.
rewrite Z.compare_sub. unfold Z.sub.
destruct (n+-m) as [|p|p]; try discriminate. now exists p.
Qed.
(** * Comparison and addition *)
Lemma Zcompare_plus_compat n m p : (p + n ?= p + m) = (n ?= m).
Proof.
apply Z.add_compare_mono_l.
Qed.
Lemma Zplus_compare_compat (r:comparison) (n m p q:Z) :
(n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r.
Proof.
rewrite (Z.compare_sub n), (Z.compare_sub p), (Z.compare_sub (n+p)).
unfold Z.sub. rewrite Z.opp_add_distr. rewrite Z.add_shuffle1.
destruct (n+-m), (p+-q); simpl; intros; now subst.
Qed.
Lemma Zcompare_succ_Gt n : (Z.succ n ?= n) = Gt.
Proof.
apply Z.lt_gt. apply Z.lt_succ_diag_r.
Qed.
Lemma Zcompare_Gt_not_Lt n m : (n ?= m) = Gt <-> (n ?= m+1) <> Lt.
Proof.
change (n > m <-> n >= m+1). Z.swap_greater. symmetry. apply Z.le_succ_l.
Qed.
(** * Successor and comparison *)
Lemma Zcompare_succ_compat n m : (Z.succ n ?= Z.succ m) = (n ?= m).
Proof.
rewrite <- 2 Z.add_1_l. apply Zcompare_plus_compat.
Qed.
(** * Multiplication and comparison *)
Lemma Zcompare_mult_compat :
forall (p:positive) (n m:Z), (Zpos p * n ?= Zpos p * m) = (n ?= m).
Proof.
intros p [|n|n] [|m|m]; simpl; trivial; now rewrite Pos.mul_compare_mono_l.
Qed.
Lemma Zmult_compare_compat_l n m p:
p > 0 -> (n ?= m) = (p * n ?= p * m).
Proof.
intros; destruct p; try discriminate.
symmetry. apply Zcompare_mult_compat.
Qed.
Lemma Zmult_compare_compat_r n m p :
p > 0 -> (n ?= m) = (n * p ?= m * p).
Proof.
intros; rewrite 2 (Zmult_comm _ p); now apply Zmult_compare_compat_l.
Qed.
(** * Relating [x ?= y] to [=], [<=], [<], [>=] or [>] *)
Lemma Zcompare_elim :
forall (c1 c2 c3:Prop) (n m:Z),
(n = m -> c1) ->
(n < m -> c2) ->
(n > m -> c3) -> match n ?= m with
| Eq => c1
| Lt => c2
| Gt => c3
end.
Proof.
intros. case Z.compare_spec; trivial. now Z.swap_greater.
Qed.
Lemma Zcompare_eq_case :
forall (c1 c2 c3:Prop) (n m:Z),
c1 -> n = m -> match n ?= m with
| Eq => c1
| Lt => c2
| Gt => c3
end.
Proof.
intros. subst. now rewrite Z.compare_refl.
Qed.
Lemma Zle_compare :
forall n m:Z,
n <= m -> match n ?= m with
| Eq => True
| Lt => True
| Gt => False
end.
Proof.
intros. case Z.compare_spec; trivial; Z.order.
Qed.
Lemma Zlt_compare :
forall n m:Z,
n < m -> match n ?= m with
| Eq => False
| Lt => True
| Gt => False
end.
Proof.
intros x y H; now rewrite H.
Qed.
Lemma Zge_compare :
forall n m:Z,
n >= m -> match n ?= m with
| Eq => True
| Lt => False
| Gt => True
end.
Proof.
intros. now case Z.compare_spec.
Qed.
Lemma Zgt_compare :
forall n m:Z,
n > m -> match n ?= m with
| Eq => False
| Lt => False
| Gt => True
end.
Proof.
intros x y H; now rewrite H.
Qed.
(** Compatibility notations *)
Notation Zcompare_refl := Z.compare_refl (only parsing).
Notation Zcompare_Eq_eq := Z.compare_eq (only parsing).
Notation Zcompare_Eq_iff_eq := Z.compare_eq_iff (only parsing).
Notation Zcompare_spec := Z.compare_spec (only parsing).
Notation Zmin_l := Z.min_l (only parsing).
Notation Zmin_r := Z.min_r (only parsing).
Notation Zmax_l := Z.max_l (only parsing).
Notation Zmax_r := Z.max_r (only parsing).
Notation Zabs_eq := Z.abs_eq (only parsing).
Notation Zabs_non_eq := Z.abs_neq (only parsing).
Notation Zsgn_0 := Z.sgn_null (only parsing).
Notation Zsgn_1 := Z.sgn_pos (only parsing).
Notation Zsgn_m1 := Z.sgn_neg (only parsing).
(** Not kept: Zcompare_egal_dec *)
|