1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $$ i*)
(**********************************************************************)
(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
(**********************************************************************)
Require Export BinPos.
Require Export BinInt.
Require Import Lt.
Require Import Gt.
Require Import Plus.
Require Import Mult.
Open Local Scope Z_scope.
(***************************)
(** * Comparison on integers *)
Lemma Zcompare_refl : forall n:Z, (n ?= n) = Eq.
Proof.
intro x; destruct x as [| p| p]; simpl in |- *;
[ reflexivity | apply Pcompare_refl | rewrite Pcompare_refl; reflexivity ].
Qed.
Lemma Zcompare_Eq_eq : forall n m:Z, (n ?= m) = Eq -> n = m.
Proof.
intros x y; destruct x as [| x'| x']; destruct y as [| y'| y']; simpl in |- *;
intro H; reflexivity || (try discriminate H);
[ rewrite (Pcompare_Eq_eq x' y' H); reflexivity
| rewrite (Pcompare_Eq_eq x' y');
[ reflexivity
| destruct ((x' ?= y')%positive Eq); reflexivity || discriminate ] ].
Qed.
Ltac destr_zcompare :=
match goal with |- context [Zcompare ?x ?y] =>
let H := fresh "H" in
case_eq (Zcompare x y); intro H;
[generalize (Zcompare_Eq_eq _ _ H); clear H; intro H |
change (x<y)%Z in H |
change (x>y)%Z in H ]
end.
Lemma Zcompare_Eq_iff_eq : forall n m:Z, (n ?= m) = Eq <-> n = m.
Proof.
intros x y; split; intro E;
[ apply Zcompare_Eq_eq; assumption | rewrite E; apply Zcompare_refl ].
Qed.
Lemma Zcompare_antisym : forall n m:Z, CompOpp (n ?= m) = (m ?= n).
Proof.
intros x y; destruct x; destruct y; simpl in |- *;
reflexivity || discriminate H || rewrite Pcompare_antisym;
reflexivity.
Qed.
Lemma Zcompare_Gt_Lt_antisym : forall n m:Z, (n ?= m) = Gt <-> (m ?= n) = Lt.
Proof.
intros x y.
rewrite <- Zcompare_antisym. change Gt with (CompOpp Lt).
split.
auto using CompOpp_inj.
intros; f_equal; auto.
Qed.
(** * Transitivity of comparison *)
Lemma Zcompare_Lt_trans :
forall n m p:Z, (n ?= m) = Lt -> (m ?= p) = Lt -> (n ?= p) = Lt.
Proof.
intros x y z; case x; case y; case z; simpl;
try discriminate; auto with arith.
intros; eapply Plt_trans; eauto.
intros p q r; rewrite 3 Pcompare_antisym; simpl.
intros; eapply Plt_trans; eauto.
Qed.
Lemma Zcompare_Gt_trans :
forall n m p:Z, (n ?= m) = Gt -> (m ?= p) = Gt -> (n ?= p) = Gt.
Proof.
intros n m p Hnm Hmp.
apply <- Zcompare_Gt_Lt_antisym.
apply -> Zcompare_Gt_Lt_antisym in Hnm.
apply -> Zcompare_Gt_Lt_antisym in Hmp.
eapply Zcompare_Lt_trans; eauto.
Qed.
(** * Comparison and opposite *)
Lemma Zcompare_opp : forall n m:Z, (n ?= m) = (- m ?= - n).
Proof.
intros x y; case x; case y; simpl in |- *; auto with arith; intros;
rewrite <- ZC4; trivial with arith.
Qed.
Hint Local Resolve Pcompare_refl.
(** * Comparison first-order specification *)
Lemma Zcompare_Gt_spec :
forall n m:Z, (n ?= m) = Gt -> exists h : positive, n + - m = Zpos h.
Proof.
intros x y; case x; case y;
[ simpl in |- *; intros H; discriminate H
| simpl in |- *; intros p H; discriminate H
| intros p H; exists p; simpl in |- *; auto with arith
| intros p H; exists p; simpl in |- *; auto with arith
| intros q p H; exists (p - q)%positive; unfold Zplus, Zopp in |- *;
unfold Zcompare in H; rewrite H; trivial with arith
| intros q p H; exists (p + q)%positive; simpl in |- *; trivial with arith
| simpl in |- *; intros p H; discriminate H
| simpl in |- *; intros q p H; discriminate H
| unfold Zcompare in |- *; intros q p; rewrite <- ZC4; intros H;
exists (q - p)%positive; simpl in |- *; rewrite (ZC1 q p H);
trivial with arith ].
Qed.
(** * Comparison and addition *)
Lemma weaken_Zcompare_Zplus_compatible :
(forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m)) ->
forall n m p:Z, (p + n ?= p + m) = (n ?= m).
Proof.
intros H x y z; destruct z;
[ reflexivity
| apply H
| rewrite (Zcompare_opp x y); rewrite Zcompare_opp;
do 2 rewrite Zopp_plus_distr; rewrite Zopp_neg;
apply H ].
Qed.
Hint Local Resolve ZC4.
Lemma weak_Zcompare_Zplus_compatible :
forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m).
Proof.
intros x y z; case x; case y; simpl in |- *; auto with arith;
[ intros p; apply nat_of_P_lt_Lt_compare_complement_morphism; apply ZL17
| intros p; ElimPcompare z p; intros E; rewrite E; auto with arith;
apply nat_of_P_gt_Gt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ unfold gt in |- *; apply ZL16 | assumption ]
| intros p; ElimPcompare z p; intros E; auto with arith;
apply nat_of_P_gt_Gt_compare_complement_morphism;
unfold gt in |- *; apply ZL17
| intros p q; ElimPcompare q p; intros E; rewrite E;
[ rewrite (Pcompare_Eq_eq q p E); apply Pcompare_refl
| apply nat_of_P_lt_Lt_compare_complement_morphism;
do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l;
apply nat_of_P_lt_Lt_compare_morphism with (1 := E)
| apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *;
do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l;
exact (nat_of_P_gt_Gt_compare_morphism q p E) ]
| intros p q; ElimPcompare z p; intros E; rewrite E; auto with arith;
apply nat_of_P_gt_Gt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ unfold gt in |- *; apply lt_trans with (m := nat_of_P z);
[ apply ZL16 | apply ZL17 ]
| assumption ]
| intros p; ElimPcompare z p; intros E; rewrite E; auto with arith;
simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism; [ apply ZL16 | assumption ]
| intros p q; ElimPcompare z q; intros E; rewrite E; auto with arith;
simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ apply lt_trans with (m := nat_of_P z); [ apply ZL16 | apply ZL17 ]
| assumption ]
| intros p q; ElimPcompare z q; intros E0; rewrite E0; ElimPcompare z p;
intros E1; rewrite E1; ElimPcompare q p; intros E2;
rewrite E2; auto with arith;
[ absurd ((q ?= p)%positive Eq = Lt);
[ rewrite <- (Pcompare_Eq_eq z q E0);
rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z);
discriminate
| assumption ]
| absurd ((q ?= p)%positive Eq = Gt);
[ rewrite <- (Pcompare_Eq_eq z q E0);
rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z);
discriminate
| assumption ]
| absurd ((z ?= p)%positive Eq = Lt);
[ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2);
rewrite (Pcompare_refl q); discriminate
| assumption ]
| absurd ((z ?= p)%positive Eq = Lt);
[ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate
| assumption ]
| absurd ((z ?= p)%positive Eq = Gt);
[ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2);
rewrite (Pcompare_refl q); discriminate
| assumption ]
| absurd ((z ?= p)%positive Eq = Gt);
[ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate
| assumption ]
| absurd ((z ?= q)%positive Eq = Lt);
[ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2);
rewrite (Pcompare_refl p); discriminate
| assumption ]
| absurd ((p ?= q)%positive Eq = Gt);
[ rewrite <- (Pcompare_Eq_eq z p E1); rewrite E0; discriminate
| apply ZC2; assumption ]
| simpl in |- *; rewrite (Pcompare_Eq_eq q p E2);
rewrite (Pcompare_refl (p - z)); auto with arith
| simpl in |- *; rewrite <- ZC4;
apply nat_of_P_gt_Gt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ rewrite nat_of_P_minus_morphism;
[ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z);
rewrite le_plus_minus_r;
[ rewrite le_plus_minus_r;
[ apply nat_of_P_lt_Lt_compare_morphism; assumption
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
assumption ]
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
assumption ]
| apply ZC2; assumption ]
| apply ZC2; assumption ]
| simpl in |- *; rewrite <- ZC4;
apply nat_of_P_lt_Lt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ rewrite nat_of_P_minus_morphism;
[ apply plus_lt_reg_l with (p := nat_of_P z);
rewrite le_plus_minus_r;
[ rewrite le_plus_minus_r;
[ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
assumption
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
assumption ]
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
assumption ]
| apply ZC2; assumption ]
| apply ZC2; assumption ]
| absurd ((z ?= q)%positive Eq = Lt);
[ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate
| assumption ]
| absurd ((q ?= p)%positive Eq = Lt);
[ cut ((q ?= p)%positive Eq = Gt);
[ intros E; rewrite E; discriminate
| apply nat_of_P_gt_Gt_compare_complement_morphism;
unfold gt in |- *; apply lt_trans with (m := nat_of_P z);
[ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption
| apply nat_of_P_lt_Lt_compare_morphism; assumption ] ]
| assumption ]
| absurd ((z ?= q)%positive Eq = Gt);
[ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2);
rewrite (Pcompare_refl p); discriminate
| assumption ]
| absurd ((z ?= q)%positive Eq = Gt);
[ rewrite (Pcompare_Eq_eq z p E1); rewrite ZC1;
[ discriminate | assumption ]
| assumption ]
| absurd ((z ?= q)%positive Eq = Gt);
[ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate
| assumption ]
| absurd ((q ?= p)%positive Eq = Gt);
[ rewrite ZC1;
[ discriminate
| apply nat_of_P_gt_Gt_compare_complement_morphism;
unfold gt in |- *; apply lt_trans with (m := nat_of_P z);
[ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption
| apply nat_of_P_lt_Lt_compare_morphism; assumption ] ]
| assumption ]
| simpl in |- *; rewrite (Pcompare_Eq_eq q p E2); apply Pcompare_refl
| simpl in |- *; apply nat_of_P_gt_Gt_compare_complement_morphism;
unfold gt in |- *; rewrite nat_of_P_minus_morphism;
[ rewrite nat_of_P_minus_morphism;
[ apply plus_lt_reg_l with (p := nat_of_P p);
rewrite le_plus_minus_r;
[ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P q);
rewrite plus_assoc; rewrite le_plus_minus_r;
[ rewrite (plus_comm (nat_of_P q)); apply plus_lt_compat_l;
apply nat_of_P_lt_Lt_compare_morphism;
assumption
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption ]
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption ]
| assumption ]
| assumption ]
| simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ rewrite nat_of_P_minus_morphism;
[ apply plus_lt_reg_l with (p := nat_of_P q);
rewrite le_plus_minus_r;
[ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p);
rewrite plus_assoc; rewrite le_plus_minus_r;
[ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l;
apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption ]
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption ]
| assumption ]
| assumption ] ] ].
Qed.
Lemma Zcompare_plus_compat : forall n m p:Z, (p + n ?= p + m) = (n ?= m).
Proof.
exact (weaken_Zcompare_Zplus_compatible weak_Zcompare_Zplus_compatible).
Qed.
Lemma Zplus_compare_compat :
forall (r:comparison) (n m p q:Z),
(n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r.
Proof.
intros r x y z t; case r;
[ intros H1 H2; elim (Zcompare_Eq_iff_eq x y); elim (Zcompare_Eq_iff_eq z t);
intros H3 H4 H5 H6; rewrite H3;
[ rewrite H5;
[ elim (Zcompare_Eq_iff_eq (y + t) (y + t)); auto with arith
| auto with arith ]
| auto with arith ]
| intros H1 H2; elim (Zcompare_Gt_Lt_antisym (y + t) (x + z)); intros H3 H4;
apply H3; apply Zcompare_Gt_trans with (m := y + z);
[ rewrite Zcompare_plus_compat; elim (Zcompare_Gt_Lt_antisym t z);
auto with arith
| do 2 rewrite <- (Zplus_comm z); rewrite Zcompare_plus_compat;
elim (Zcompare_Gt_Lt_antisym y x); auto with arith ]
| intros H1 H2; apply Zcompare_Gt_trans with (m := x + t);
[ rewrite Zcompare_plus_compat; assumption
| do 2 rewrite <- (Zplus_comm t); rewrite Zcompare_plus_compat;
assumption ] ].
Qed.
Lemma Zcompare_succ_Gt : forall n:Z, (Zsucc n ?= n) = Gt.
Proof.
intro x; unfold Zsucc in |- *; pattern x at 2 in |- *;
rewrite <- (Zplus_0_r x); rewrite Zcompare_plus_compat;
reflexivity.
Qed.
Lemma Zcompare_Gt_not_Lt : forall n m:Z, (n ?= m) = Gt <-> (n ?= m + 1) <> Lt.
Proof.
intros x y; split;
[ intro H; elim_compare x (y + 1);
[ intro H1; rewrite H1; discriminate
| intros H1; elim Zcompare_Gt_spec with (1 := H); intros h H2;
absurd ((nat_of_P h > 0)%nat /\ (nat_of_P h < 1)%nat);
[ unfold not in |- *; intros H3; elim H3; intros H4 H5;
absurd (nat_of_P h > 0)%nat;
[ unfold gt in |- *; apply le_not_lt; apply le_S_n; exact H5
| assumption ]
| split;
[ elim (ZL4 h); intros i H3; rewrite H3; apply gt_Sn_O
| change (nat_of_P h < nat_of_P 1)%nat in |- *;
apply nat_of_P_lt_Lt_compare_morphism;
change ((Zpos h ?= 1) = Lt) in |- *; rewrite <- H2;
rewrite <- (fun m n:Z => Zcompare_plus_compat m n y);
rewrite (Zplus_comm x); rewrite Zplus_assoc;
rewrite Zplus_opp_r; simpl in |- *; exact H1 ] ]
| intros H1; rewrite H1; discriminate ]
| intros H; elim_compare x (y + 1);
[ intros H1; elim (Zcompare_Eq_iff_eq x (y + 1)); intros H2 H3;
rewrite (H2 H1); exact (Zcompare_succ_Gt y)
| intros H1; absurd ((x ?= y + 1) = Lt); assumption
| intros H1; apply Zcompare_Gt_trans with (m := Zsucc y);
[ exact H1 | exact (Zcompare_succ_Gt y) ] ] ].
Qed.
(** * Successor and comparison *)
Lemma Zcompare_succ_compat : forall n m:Z, (Zsucc n ?= Zsucc m) = (n ?= m).
Proof.
intros n m; unfold Zsucc in |- *; do 2 rewrite (fun t:Z => Zplus_comm t 1);
rewrite Zcompare_plus_compat; auto with arith.
Qed.
(** * Multiplication and comparison *)
Lemma Zcompare_mult_compat :
forall (p:positive) (n m:Z), (Zpos p * n ?= Zpos p * m) = (n ?= m).
Proof.
intros x; induction x as [p H| p H| ];
[ intros y z; cut (Zpos (xI p) = Zpos p + Zpos p + 1);
[ intros E; rewrite E; do 4 rewrite Zmult_plus_distr_l;
do 2 rewrite Zmult_1_l; apply Zplus_compare_compat;
[ apply Zplus_compare_compat; apply H | trivial with arith ]
| simpl in |- *; rewrite (Pplus_diag p); trivial with arith ]
| intros y z; cut (Zpos (xO p) = Zpos p + Zpos p);
[ intros E; rewrite E; do 2 rewrite Zmult_plus_distr_l;
apply Zplus_compare_compat; apply H
| simpl in |- *; rewrite (Pplus_diag p); trivial with arith ]
| intros y z; do 2 rewrite Zmult_1_l; trivial with arith ].
Qed.
(** * Reverting [x ?= y] to trichotomy *)
Lemma rename :
forall (A:Type) (P:A -> Prop) (x:A), (forall y:A, x = y -> P y) -> P x.
Proof.
auto with arith.
Qed.
Lemma Zcompare_elim :
forall (c1 c2 c3:Prop) (n m:Z),
(n = m -> c1) ->
(n < m -> c2) ->
(n > m -> c3) -> match n ?= m with
| Eq => c1
| Lt => c2
| Gt => c3
end.
Proof.
intros c1 c2 c3 x y; intros.
apply rename with (x := x ?= y); intro r; elim r;
[ intro; apply H; apply (Zcompare_Eq_eq x y); assumption
| unfold Zlt in H0; assumption
| unfold Zgt in H1; assumption ].
Qed.
Lemma Zcompare_eq_case :
forall (c1 c2 c3:Prop) (n m:Z),
c1 -> n = m -> match n ?= m with
| Eq => c1
| Lt => c2
| Gt => c3
end.
Proof.
intros c1 c2 c3 x y; intros.
rewrite H0; rewrite Zcompare_refl.
assumption.
Qed.
(** * Decompose an egality between two [?=] relations into 3 implications *)
Lemma Zcompare_egal_dec :
forall n m p q:Z,
(n < m -> p < q) ->
((n ?= m) = Eq -> (p ?= q) = Eq) ->
(n > m -> p > q) -> (n ?= m) = (p ?= q).
Proof.
intros x1 y1 x2 y2.
unfold Zgt in |- *; unfold Zlt in |- *; case (x1 ?= y1); case (x2 ?= y2);
auto with arith; symmetry in |- *; auto with arith.
Qed.
(** * Relating [x ?= y] to [Zle], [Zlt], [Zge] or [Zgt] *)
Lemma Zle_compare :
forall n m:Z,
n <= m -> match n ?= m with
| Eq => True
| Lt => True
| Gt => False
end.
Proof.
intros x y; unfold Zle in |- *; elim (x ?= y); auto with arith.
Qed.
Lemma Zlt_compare :
forall n m:Z,
n < m -> match n ?= m with
| Eq => False
| Lt => True
| Gt => False
end.
Proof.
intros x y; unfold Zlt in |- *; elim (x ?= y); intros;
discriminate || trivial with arith.
Qed.
Lemma Zge_compare :
forall n m:Z,
n >= m -> match n ?= m with
| Eq => True
| Lt => False
| Gt => True
end.
Proof.
intros x y; unfold Zge in |- *; elim (x ?= y); auto with arith.
Qed.
Lemma Zgt_compare :
forall n m:Z,
n > m -> match n ?= m with
| Eq => False
| Lt => False
| Gt => True
end.
Proof.
intros x y; unfold Zgt in |- *; elim (x ?= y); intros;
discriminate || trivial with arith.
Qed.
(*********************)
(** * Other properties *)
Lemma Zmult_compare_compat_l :
forall n m p:Z, p > 0 -> (n ?= m) = (p * n ?= p * m).
Proof.
intros x y z H; destruct z.
discriminate H.
rewrite Zcompare_mult_compat; reflexivity.
discriminate H.
Qed.
Lemma Zmult_compare_compat_r :
forall n m p:Z, p > 0 -> (n ?= m) = (n * p ?= m * p).
Proof.
intros x y z H; rewrite (Zmult_comm x z); rewrite (Zmult_comm y z);
apply Zmult_compare_compat_l; assumption.
Qed.
|