aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/ZOdiv.v
blob: 83dbfa2fc07da968282119efdedbc8b6745fcacd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)


Require Import BinPos BinNat Nnat ZArith_base ROmega ZArithRing Morphisms.
Require Export Ndiv_def ZOdiv_def.
Require Zdiv ZBinary ZDivTrunc.

Open Scope Z_scope.

(** This file provides results about the Round-Toward-Zero Euclidean
  division [ZOdiv_eucl], whose projections are [ZOdiv] and [ZOmod].
  Definition of this division can be found in file [ZOdiv_def].

  This division and the one defined in Zdiv agree only on positive
  numbers. Otherwise, Zdiv performs Round-Toward-Bottom.

  The current approach is compatible with the division of usual
  programming languages such as Ocaml. In addition, it has nicer
  properties with respect to opposite and other usual operations.
*)

(** Since ZOdiv and Zdiv are not meant to be used concurrently,
   we reuse the same notation. *)

Infix "/" := ZOdiv : Z_scope.
Infix "mod" := ZOmod (at level 40, no associativity) : Z_scope.

(*
(** Auxiliary results on the ad-hoc comparison [NPgeb]. *)

Lemma NPgeb_Zge : forall (n:N)(p:positive),
  NPgeb n p = true -> Z_of_N n >= Zpos p.
Proof.
 destruct n as [|n]; simpl; intros.
 discriminate.
 red; simpl; destruct Pcompare; now auto.
Qed.

Lemma NPgeb_Zlt : forall (n:N)(p:positive),
  NPgeb n p = false -> Z_of_N n < Zpos p.
Proof.
 destruct n as [|n]; simpl; intros.
 red; auto.
 red; simpl; destruct Pcompare; now auto.
Qed.
*)

(** * Relation between division on N and on Z. *)

Lemma Ndiv_Z0div : forall a b:N,
  Z_of_N (a/b) = (Z_of_N a / Z_of_N b).
Proof.
  intros.
  destruct a; destruct b; simpl; auto.
  unfold Ndiv, ZOdiv; simpl; destruct Pdiv_eucl; auto.
Qed.

Lemma Nmod_Z0mod : forall a b:N,
  Z_of_N (a mod b) = (Z_of_N a) mod (Z_of_N b).
Proof.
  intros.
  destruct a; destruct b; simpl; auto.
  unfold Nmod, ZOmod; simpl; destruct Pdiv_eucl; auto.
Qed.

(** * Characterization of this euclidean division. *)

(** First, the usual equation [a=q*b+r]. Notice that [a mod 0]
   has been chosen to be [a], so this equation holds even for [b=0].
*)

Theorem ZO_div_mod_eq : forall a b,
  a = b * (ZOdiv a b) + (ZOmod a b).
Proof.
  intros; generalize (ZOdiv_eucl_correct a b).
  unfold ZOdiv, ZOmod; destruct ZOdiv_eucl; simpl.
  intro H; rewrite H; rewrite Zmult_comm; auto.
Qed.

(** Then, the inequalities constraining the remainder:
    The remainder is bounded by the divisor, in term of absolute values *)

Theorem ZOmod_lt : forall a b:Z, b<>0 ->
  Zabs (a mod b) < Zabs b.
Proof.
  destruct b as [ |b|b]; intro H; try solve [elim H;auto];
  destruct a as [ |a|a]; try solve [compute;auto]; unfold ZOmod, ZOdiv_eucl;
  generalize (Pdiv_eucl_remainder a b); destruct Pdiv_eucl; simpl;
  try rewrite Zabs_Zopp; rewrite Zabs_eq; auto using Z_of_N_le_0;
  intros LT; apply (Z_of_N_lt _ _ LT).
Qed.

(** The sign of the remainder is the one of [a]. Due to the possible
   nullity of [a], a general result is to be stated in the following form:
*)

Theorem ZOmod_sgn : forall a b:Z,
  0 <= Zsgn (a mod b) * Zsgn a.
Proof.
  destruct b as [ |b|b]; destruct a as [ |a|a]; simpl; auto with zarith;
  unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl;
  simpl; destruct n0; simpl; auto with zarith.
Qed.

(** This can also be said in a simplier way: *)

Theorem Zsgn_pos_iff : forall z, 0 <= Zsgn z <-> 0 <= z.
Proof.
 destruct z; simpl; intuition auto with zarith.
Qed.

Theorem ZOmod_sgn2 : forall a b:Z,
  0 <= (a mod b) * a.
Proof.
  intros; rewrite <-Zsgn_pos_iff, Zsgn_Zmult; apply ZOmod_sgn.
Qed.

(** Reformulation of [ZOdiv_lt] and [ZOmod_sgn] in 2
  then 4 particular cases. *)

Theorem ZOmod_lt_pos : forall a b:Z, 0<=a -> b<>0 ->
  0 <= a mod b < Zabs b.
Proof.
  intros.
  assert (0 <= a mod b).
   generalize (ZOmod_sgn a b).
   destruct (Zle_lt_or_eq 0 a H).
   rewrite <- Zsgn_pos in H1; rewrite H1; romega with *.
   subst a; simpl; auto.
  generalize (ZOmod_lt a b H0); romega with *.
Qed.

Theorem ZOmod_lt_neg : forall a b:Z, a<=0 -> b<>0 ->
  -Zabs b < a mod b <= 0.
Proof.
  intros.
  assert (a mod b <= 0).
   generalize (ZOmod_sgn a b).
   destruct (Zle_lt_or_eq a 0 H).
   rewrite <- Zsgn_neg in H1; rewrite H1; romega with *.
   subst a; simpl; auto.
  generalize (ZOmod_lt a b H0); romega with *.
Qed.

Theorem ZOmod_lt_pos_pos : forall a b:Z, 0<=a -> 0<b -> 0 <= a mod b < b.
Proof.
  intros; generalize (ZOmod_lt_pos a b); romega with *.
Qed.

Theorem ZOmod_lt_pos_neg : forall a b:Z, 0<=a -> b<0 -> 0 <= a mod b < -b.
Proof.
  intros; generalize (ZOmod_lt_pos a b); romega with *.
Qed.

Theorem ZOmod_lt_neg_pos : forall a b:Z, a<=0 -> 0<b -> -b < a mod b <= 0.
Proof.
  intros; generalize (ZOmod_lt_neg a b); romega with *.
Qed.

Theorem ZOmod_lt_neg_neg : forall a b:Z, a<=0 -> b<0 -> b < a mod b <= 0.
Proof.
  intros; generalize (ZOmod_lt_neg a b); romega with *.
Qed.

(** * Division and Opposite *)

(* The precise equalities that are invalid with "historic" Zdiv. *)

Theorem ZOdiv_opp_l : forall a b:Z, (-a)/b = -(a/b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.

Theorem ZOdiv_opp_r : forall a b:Z, a/(-b) = -(a/b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.

Theorem ZOmod_opp_l : forall a b:Z, (-a) mod b = -(a mod b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.

Theorem ZOmod_opp_r : forall a b:Z, a mod (-b) = a mod b.
Proof.
 destruct a; destruct b; simpl; auto;
  unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.

Theorem ZOdiv_opp_opp : forall a b:Z, (-a)/(-b) = a/b.
Proof.
 destruct a; destruct b; simpl; auto;
  unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.

Theorem ZOmod_opp_opp : forall a b:Z, (-a) mod (-b) = -(a mod b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
Qed.

(** We know enough to prove that [ZOdiv] and [ZOmod] are instances of
    one of the abstract Euclidean divisions of Numbers. *)

Module ZODiv <: ZDivTrunc.ZDiv ZBinary.Z.
 Definition div := ZOdiv.
 Definition modulo := ZOmod.
 Local Obligation Tactic := simpl_relation.
 Program Instance div_wd : Proper (eq==>eq==>eq) div.
 Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.

 Definition div_mod := fun a b (_:b<>0) => ZO_div_mod_eq a b.
 Definition mod_bound := ZOmod_lt_pos_pos.
 Definition mod_opp_l := fun a b (_:b<>0) => ZOmod_opp_l a b.
 Definition mod_opp_r := fun a b (_:b<>0) => ZOmod_opp_r a b.
End ZODiv.

Module ZODivMod := ZBinary.Z <+ ZODiv.

(** We hence benefit from generic results about this abstract division. *)

Module Z := ZDivTrunc.ZDivPropFunct ZODivMod ZBinary.Z.

(** * Unicity results *)

Definition Remainder a b r :=
  (0 <= a /\ 0 <= r < Zabs b) \/ (a <= 0 /\ -Zabs b < r <= 0).

Definition Remainder_alt a b r :=
  Zabs r < Zabs b /\ 0 <= r * a.

Lemma Remainder_equiv : forall a b r,
 Remainder a b r <-> Remainder_alt a b r.
Proof.
  unfold Remainder, Remainder_alt; intuition.
  romega with *.
  romega with *.
  rewrite <-(Zmult_opp_opp).
  apply Zmult_le_0_compat; romega.
  assert (0 <= Zsgn r * Zsgn a) by (rewrite <-Zsgn_Zmult, Zsgn_pos_iff; auto).
  destruct r; simpl Zsgn in *; romega with *.
Qed.

Theorem ZOdiv_mod_unique_full:
 forall a b q r, Remainder a b r ->
   a = b*q + r -> q = a/b /\ r = a mod b.
Proof.
  destruct 1 as [(H,H0)|(H,H0)]; intros.
  apply Zdiv.Zdiv_mod_unique with b; auto.
  apply ZOmod_lt_pos; auto.
  romega with *.
  rewrite <- H1; apply ZO_div_mod_eq.

  rewrite <- (Zopp_involutive a).
  rewrite ZOdiv_opp_l, ZOmod_opp_l.
  generalize (Zdiv.Zdiv_mod_unique b (-q) (-a/b) (-r) (-a mod b)).
  generalize (ZOmod_lt_pos (-a) b).
  rewrite <-ZO_div_mod_eq, <-Zopp_mult_distr_r, <-Zopp_plus_distr, <-H1.
  romega with *.
Qed.

Theorem ZOdiv_unique_full:
 forall a b q r, Remainder a b r ->
  a = b*q + r -> q = a/b.
Proof.
 intros; destruct (ZOdiv_mod_unique_full a b q r); auto.
Qed.

Theorem ZOdiv_unique:
 forall a b q r, 0 <= a -> 0 <= r < b ->
   a = b*q + r -> q = a/b.
Proof. exact Z.div_unique. Qed.

Theorem ZOmod_unique_full:
 forall a b q r, Remainder a b r ->
  a = b*q + r -> r = a mod b.
Proof.
 intros; destruct (ZOdiv_mod_unique_full a b q r); auto.
Qed.

Theorem ZOmod_unique:
 forall a b q r, 0 <= a -> 0 <= r < b ->
   a = b*q + r -> r = a mod b.
Proof. exact Z.mod_unique. Qed.

(** * Basic values of divisions and modulo. *)

Lemma ZOmod_0_l: forall a, 0 mod a = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma ZOmod_0_r: forall a, a mod 0 = a.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma ZOdiv_0_l: forall a, 0/a = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma ZOdiv_0_r: forall a, a/0 = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma ZOmod_1_r: forall a, a mod 1 = 0.
Proof. exact Z.mod_1_r. Qed.

Lemma ZOdiv_1_r: forall a, a/1 = a.
Proof. exact Z.div_1_r. Qed.

Hint Resolve ZOmod_0_l ZOmod_0_r ZOdiv_0_l ZOdiv_0_r ZOdiv_1_r ZOmod_1_r
 : zarith.

Lemma ZOdiv_1_l: forall a, 1 < a -> 1/a = 0.
Proof. exact Z.div_1_l. Qed.

Lemma ZOmod_1_l: forall a, 1 < a ->  1 mod a = 1.
Proof. exact Z.mod_1_l. Qed.

Lemma ZO_div_same : forall a:Z, a<>0 -> a/a = 1.
Proof. exact Z.div_same. Qed.

Ltac zero_or_not a :=
  destruct (Z_eq_dec a 0);
  [subst; rewrite ?ZOmod_0_l, ?ZOdiv_0_l, ?ZOmod_0_r, ?ZOdiv_0_r;
   auto with zarith|].

Lemma ZO_mod_same : forall a, a mod a = 0.
Proof. intros. zero_or_not a. apply Z.mod_same; auto. Qed.

Lemma ZO_mod_mult : forall a b, (a*b) mod b = 0.
Proof. intros. zero_or_not b. apply Z.mod_mul; auto. Qed.

Lemma ZO_div_mult : forall a b:Z, b <> 0 -> (a*b)/b = a.
Proof. exact Z.div_mul. Qed.

(** * Order results about ZOmod and ZOdiv *)

(* Division of positive numbers is positive. *)

Lemma ZO_div_pos: forall a b, 0 <= a -> 0 <= b -> 0 <= a/b.
Proof. intros. zero_or_not b. apply Z.div_pos; auto with zarith. Qed.

(** As soon as the divisor is greater or equal than 2,
    the division is strictly decreasing. *)

Lemma ZO_div_lt : forall a b:Z, 0 < a -> 2 <= b -> a/b < a.
Proof. intros. apply Z.div_lt; auto with zarith. Qed.

(** A division of a small number by a bigger one yields zero. *)

Theorem ZOdiv_small: forall a b, 0 <= a < b -> a/b = 0.
Proof. exact Z.div_small. Qed.

(** Same situation, in term of modulo: *)

Theorem ZOmod_small: forall a n, 0 <= a < n -> a mod n = a.
Proof. exact Z.mod_small. Qed.

(** [Zge] is compatible with a positive division. *)

Lemma ZO_div_monotone : forall a b c, 0<=c -> a<=b -> a/c <= b/c.
Proof. intros. zero_or_not c. apply Z.div_le_mono; auto with zarith. Qed.

(** With our choice of division, rounding of (a/b) is always done toward zero: *)

Lemma ZO_mult_div_le : forall a b:Z, 0 <= a -> 0 <= b*(a/b) <= a.
Proof. intros. zero_or_not b. apply Z.mul_div_le; auto with zarith. Qed.

Lemma ZO_mult_div_ge : forall a b:Z, a <= 0 -> a <= b*(a/b) <= 0.
Proof. intros. zero_or_not b. apply Z.mul_div_ge; auto with zarith. Qed.

(** The previous inequalities between [b*(a/b)] and [a] are exact
    iff the modulo is zero. *)

Lemma ZO_div_exact_full : forall a b:Z, a = b*(a/b) <-> a mod b = 0.
Proof. intros. zero_or_not b. intuition. apply Z.div_exact; auto. Qed.

(** A modulo cannot grow beyond its starting point. *)

Theorem ZOmod_le: forall a b, 0 <= a -> 0 <= b -> a mod b <= a.
Proof. intros. zero_or_not b. apply Z.mod_le; auto with zarith. Qed.

(** Some additionnal inequalities about Zdiv. *)

Theorem ZOdiv_le_upper_bound:
  forall a b q, 0 < b -> a <= q*b -> a/b <= q.
Proof. intros a b q; rewrite Zmult_comm; apply Z.div_le_upper_bound. Qed.

Theorem ZOdiv_lt_upper_bound:
  forall a b q, 0 <= a -> 0 < b -> a < q*b -> a/b < q.
Proof. intros a b q; rewrite Zmult_comm; apply Z.div_lt_upper_bound. Qed.

Theorem ZOdiv_le_lower_bound:
  forall a b q, 0 < b -> q*b <= a -> q <= a/b.
Proof. intros a b q; rewrite Zmult_comm; apply Z.div_le_lower_bound. Qed.

Theorem ZOdiv_sgn: forall a b,
  0 <= Zsgn (a/b) * Zsgn a * Zsgn b.
Proof.
  destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith;
  unfold ZOdiv; simpl; destruct Pdiv_eucl; simpl; destruct n; simpl; auto with zarith.
Qed.

(** * Relations between usual operations and Zmod and Zdiv *)

(** First, a result that used to be always valid with Zdiv,
    but must be restricted here.
    For instance, now (9+(-5)*2) mod 2 = -1 <> 1 = 9 mod 2 *)

Lemma ZO_mod_plus : forall a b c:Z,
 0 <= (a+b*c) * a ->
 (a + b * c) mod c = a mod c.
Proof. intros. zero_or_not c. apply Z.mod_add; auto with zarith. Qed.

Lemma ZO_div_plus : forall a b c:Z,
 0 <= (a+b*c) * a -> c<>0 ->
 (a + b * c) / c = a / c + b.
Proof. intros. apply Z.div_add; auto with zarith. Qed.

Theorem ZO_div_plus_l: forall a b c : Z,
 0 <= (a*b+c)*c -> b<>0 ->
 b<>0 -> (a * b + c) / b = a + c / b.
Proof. intros. apply Z.div_add_l; auto with zarith. Qed.

(** Cancellations. *)

Lemma ZOdiv_mult_cancel_r : forall a b c:Z,
 c<>0 -> (a*c)/(b*c) = a/b.
Proof. intros. zero_or_not b. apply Z.div_mul_cancel_r; auto. Qed.

Lemma ZOdiv_mult_cancel_l : forall a b c:Z,
 c<>0 -> (c*a)/(c*b) = a/b.
Proof.
 intros. rewrite (Zmult_comm c b). zero_or_not b.
 rewrite (Zmult_comm b c). apply Z.div_mul_cancel_l; auto.
Qed.

Lemma ZOmult_mod_distr_l: forall a b c,
  (c*a) mod (c*b) = c * (a mod b).
Proof.
 intros. zero_or_not c. rewrite (Zmult_comm c b). zero_or_not b.
 rewrite (Zmult_comm b c). apply Z.mul_mod_distr_l; auto.
Qed.

Lemma ZOmult_mod_distr_r: forall a b c,
  (a*c) mod (b*c) = (a mod b) * c.
Proof.
 intros. zero_or_not b. rewrite (Zmult_comm b c). zero_or_not c.
 rewrite (Zmult_comm c b). apply Z.mul_mod_distr_r; auto.
Qed.

(** Operations modulo. *)

Theorem ZOmod_mod: forall a n, (a mod n) mod n = a mod n.
Proof. intros. zero_or_not n. apply Z.mod_mod; auto. Qed.

Theorem ZOmult_mod: forall a b n,
 (a * b) mod n = ((a mod n) * (b mod n)) mod n.
Proof. intros. zero_or_not n. apply Z.mul_mod; auto. Qed.

(** addition and modulo

  Generally speaking, unlike with Zdiv, we don't have
       (a+b) mod n = (a mod n + b mod n) mod n
  for any a and b.
  For instance, take (8 + (-10)) mod 3 = -2 whereas
  (8 mod 3 + (-10 mod 3)) mod 3 = 1. *)

Theorem ZOplus_mod: forall a b n,
 0 <= a * b ->
 (a + b) mod n = (a mod n + b mod n) mod n.
Proof. intros. zero_or_not n. apply Z.add_mod; auto. Qed.

Lemma ZOplus_mod_idemp_l: forall a b n,
 0 <= a * b ->
 (a mod n + b) mod n = (a + b) mod n.
Proof. intros. zero_or_not n. apply Z.add_mod_idemp_l; auto. Qed.

Lemma ZOplus_mod_idemp_r: forall a b n,
 0 <= a*b ->
 (b + a mod n) mod n = (b + a) mod n.
Proof.
 intros. zero_or_not n. apply Z.add_mod_idemp_r; auto.
 rewrite Zmult_comm; auto. Qed.

Lemma ZOmult_mod_idemp_l: forall a b n, (a mod n * b) mod n = (a * b) mod n.
Proof. intros. zero_or_not n. apply Z.mul_mod_idemp_l; auto. Qed.

Lemma ZOmult_mod_idemp_r: forall a b n, (b * (a mod n)) mod n = (b * a) mod n.
Proof. intros. zero_or_not n. apply Z.mul_mod_idemp_r; auto. Qed.

(** Unlike with Zdiv, the following result is true without restrictions. *)

Lemma ZOdiv_ZOdiv : forall a b c, (a/b)/c = a/(b*c).
Proof.
 intros. zero_or_not b. rewrite Zmult_comm. zero_or_not c.
 rewrite Zmult_comm. apply Z.div_div; auto.
Qed.

(** A last inequality: *)

Theorem ZOdiv_mult_le:
 forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a/b) <= (c*a)/b.
Proof. intros. zero_or_not b. apply Z.div_mul_le; auto with zarith. Qed.

(** ZOmod is related to divisibility (see more in Znumtheory) *)

Lemma ZOmod_divides : forall a b,
 a mod b = 0 <-> exists c, a = b*c.
Proof. intros. zero_or_not b. firstorder. apply Z.mod_divides; auto. Qed.

(** * Interaction with "historic" Zdiv *)

(** They agree at least on positive numbers: *)

Theorem ZOdiv_eucl_Zdiv_eucl_pos : forall a b:Z, 0 <= a -> 0 < b ->
  a/b = Zdiv.Zdiv a b /\ a mod b = Zdiv.Zmod a b.
Proof.
  intros.
  apply Zdiv.Zdiv_mod_unique with b.
  apply ZOmod_lt_pos; auto with zarith.
  rewrite Zabs_eq; auto with *; apply Zdiv.Z_mod_lt; auto with *.
  rewrite <- Zdiv.Z_div_mod_eq; auto with *.
  symmetry; apply ZO_div_mod_eq; auto with *.
Qed.

Theorem ZOdiv_Zdiv_pos : forall a b, 0 <= a -> 0 <= b ->
  a/b = Zdiv.Zdiv a b.
Proof.
 intros a b Ha Hb.
 destruct (Zle_lt_or_eq _ _ Hb).
 generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha H); intuition.
 subst; rewrite ZOdiv_0_r, Zdiv.Zdiv_0_r; reflexivity.
Qed.

Theorem ZOmod_Zmod_pos : forall a b, 0 <= a -> 0 < b ->
  a mod b = Zdiv.Zmod a b.
Proof.
 intros a b Ha Hb; generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha Hb);
 intuition.
Qed.

(** Modulos are null at the same places *)

Theorem ZOmod_Zmod_zero : forall a b, b<>0 ->
 (a mod b = 0 <-> Zdiv.Zmod a b = 0).
Proof.
 intros.
 rewrite ZOmod_divides, Zdiv.Zmod_divides; intuition.
Qed.