aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/ZArith_dec.v
blob: 7037a5cacd1313085a7c6263a9b8c596aeb1b485 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

Require Sumbool.

Require fast_integer.
Require zarith_aux.
Require auxiliary.
Require Zsyntax.
Import Z_scope.


Lemma Dcompare_inf : (r:relation) {r=EGAL} + {r=INFERIEUR} + {r=SUPERIEUR}.
Proof.
Induction r; Auto with arith. 
Defined.

Lemma Zcompare_rec :
  (P:Set)(x,y:Z)
    ((Zcompare x y)=EGAL -> P) ->
    ((Zcompare x y)=INFERIEUR -> P) ->
    ((Zcompare x y)=SUPERIEUR -> P) ->
    P.
Proof.
Intros P x y H1 H2 H3.
Elim (Dcompare_inf (Zcompare x y)).
Intro H. Elim H; Auto with arith. Auto with arith.
Defined.


Section decidability.

Variables x,y : Z.

Definition Z_eq_dec : {x=y}+{~x=y}.
Proof.
Apply Zcompare_rec with x:=x y:=y.
Intro. Left. Elim (Zcompare_EGAL x y); Auto with arith.
Intro H3. Right. Elim (Zcompare_EGAL x y). Intros H1 H2. Unfold not. Intro H4.
  Rewrite (H2 H4) in H3. Discriminate H3.
Intro H3. Right. Elim (Zcompare_EGAL x y). Intros H1 H2. Unfold not. Intro H4.
  Rewrite (H2 H4) in H3. Discriminate H3.
Defined. 

Definition Z_lt_dec : {(Zlt x y)}+{~(Zlt x y)}.
Proof.
Unfold Zlt.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Right. Rewrite H. Discriminate.
Left; Assumption.
Right. Rewrite H. Discriminate.
Defined.

Definition Z_le_dec : {(Zle x y)}+{~(Zle x y)}.
Proof.
Unfold Zle.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Left. Rewrite H. Discriminate.
Left. Rewrite H. Discriminate.
Right. Tauto.
Defined.

Definition Z_gt_dec : {(Zgt x y)}+{~(Zgt x y)}.
Proof.
Unfold Zgt.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Right. Rewrite H. Discriminate.
Right. Rewrite H. Discriminate.
Left; Assumption.
Defined.

Definition Z_ge_dec : {(Zge x y)}+{~(Zge x y)}.
Proof.
Unfold Zge.
Apply Zcompare_rec with x:=x y:=y; Intro H.
Left. Rewrite H. Discriminate.
Right. Tauto.
Left. Rewrite H. Discriminate.
Defined.

Definition Z_lt_ge_dec : {`x < y`}+{`x >= y`}.
Proof.
Exact Z_lt_dec.
Defined.

Definition Z_le_gt_dec : {`x <= y`}+{`x > y`}.
Proof.
Elim Z_le_dec; Auto with arith.
Intro. Right. Apply not_Zle; Auto with arith.
Defined.

Definition Z_gt_le_dec : {`x > y`}+{`x <= y`}.
Proof.
Exact Z_gt_dec.
Defined.

Definition Z_ge_lt_dec : {`x >= y`}+{`x < y`}.
Proof.
Elim Z_ge_dec; Auto with arith.
Intro. Right. Apply not_Zge; Auto with arith.
Defined.


Definition Z_le_lt_eq_dec : `x <= y` -> {`x < y`}+{x=y}.
Proof.
Intro H.
Apply Zcompare_rec with x:=x y:=y.
Intro. Right. Elim (Zcompare_EGAL x y); Auto with arith.
Intro. Left. Elim (Zcompare_EGAL x y); Auto with arith.
Intro H1. Absurd `x > y`; Auto with arith.
Defined.


End decidability.


Definition Z_zerop : (x:Z){(`x = 0`)}+{(`x <> 0`)}.
Proof.
Exact [x:Z](Z_eq_dec x ZERO).
Defined.

Definition Z_notzerop := [x:Z](sumbool_not ? ? (Z_zerop x)).

Definition Z_noteq_dec := [x,y:Z](sumbool_not ? ? (Z_eq_dec x y)).