aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Wellfounded/Inverse_Image.v
blob: aa6fa6ee6cbcc26657ee3e06ea2f5d1719bc027e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Author: Bruno Barras *)

Section Inverse_Image.

  Variables A B : Type.
  Variable R : B -> B -> Prop.
  Variable f : A -> B.

  Let Rof (x y:A) : Prop := R (f x) (f y).

  Remark Acc_lemma : forall y:B, Acc R y -> forall x:A, y = f x -> Acc Rof x.
  Proof.
    induction 1 as [y _ IHAcc]; intros x H.
    apply Acc_intro; intros y0 H1.
    apply (IHAcc (f y0)); try trivial.
    rewrite H; trivial.
  Qed.

  Lemma Acc_inverse_image : forall x:A, Acc R (f x) -> Acc Rof x.
  Proof.
    intros; apply (Acc_lemma (f x)); trivial.
  Qed.

  Theorem wf_inverse_image : well_founded R -> well_founded Rof.
  Proof.
    red; intros; apply Acc_inverse_image; auto.
  Qed.

  Variable F : A -> B -> Prop.
  Let RoF (x y:A) : Prop :=
    exists2 b : B, F x b & (forall c:B, F y c -> R b c).

  Lemma Acc_inverse_rel : forall b:B, Acc R b -> forall x:A, F x b -> Acc RoF x.
  Proof.
    induction 1 as [x _ IHAcc]; intros x0 H2.
    constructor; intros y H3.
    destruct H3.
    apply (IHAcc x1); auto.
  Qed.


  Theorem wf_inverse_rel : well_founded R -> well_founded RoF.
  Proof.
    red; constructor; intros.
    case H0; intros.
    apply (Acc_inverse_rel x); auto.
  Qed.

End Inverse_Image.