aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Vectors/Fin.v
blob: 4088843a1b51800f6e47c79e2bace62bdcb7b5c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Arith_base.

(** [fin n] is a convenient way to represent \[1 .. n\]

[fin n] can be seen as a n-uplet of unit. [F1] is the first element of
the n-uplet. If [f] is the k-th element of the (n-1)-uplet, [FS f] is the
(k+1)-th element of  the n-uplet.

   Author: Pierre Boutillier
   Institution: PPS, INRIA 12/2010-01/2012-07/2012
*)

Inductive t : nat -> Set :=
|F1 : forall {n}, t (S n)
|FS : forall {n}, t n -> t (S n).

Section SCHEMES.
Definition case0 P (p: t 0): P p :=
  match p with | F1 | FS  _ => fun devil => False_rect (@IDProp) devil (* subterm !!! *) end.

Definition caseS' {n : nat} (p : t (S n)) : forall (P : t (S n) -> Type) 
  (P1 : P F1) (PS : forall (p : t n), P (FS p)), P p :=
  match p with
  | @F1 k => fun P P1 PS => P1
  | FS pp => fun P P1 PS => PS pp
  end.

Definition caseS (P: forall {n}, t (S n) -> Type)
  (P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p))
  {n} (p: t (S n)) : P p := caseS' p P (P1 n) PS.

Definition rectS (P: forall {n}, t (S n) -> Type)
  (P1: forall n, @P n F1) (PS : forall {n} (p: t (S n)), P p -> P (FS p)):
  forall {n} (p: t (S n)), P p :=
fix rectS_fix {n} (p: t (S n)): P p:=
  match p with
  | @F1 k => P1 k
  | @FS 0 pp => case0 (fun f => P (FS f)) pp
  | @FS (S k) pp => PS pp (rectS_fix pp)
  end.

Definition rect2 (P : forall {n} (a b : t n), Type)
  (H0 : forall n, @P (S n) F1 F1)
  (H1 : forall {n} (f : t n), P F1 (FS f))
  (H2 : forall {n} (f : t n), P (FS f) F1)
  (HS : forall {n} (f g : t n), P f g -> P (FS f) (FS g)) :
    forall {n} (a b : t n), P a b :=
  fix rect2_fix {n} (a : t n) {struct a} : forall (b : t n), P a b :=
    match a with
    | @F1 m => fun (b : t (S m)) => caseS' b (P F1) (H0 _) H1
    | @FS m a' => fun (b : t (S m)) =>
      caseS' b (fun b => P (@FS m a') b) (H2 a') (fun b' => HS _ _ (rect2_fix a' b'))
    end.

End SCHEMES.

Definition FS_inj {n} (x y: t n) (eq: FS x = FS y): x = y :=
match eq in _ = a return
  match a as a' in t m return match m with |0 => Prop |S n' => t n' -> Prop end
  with F1 =>  fun _ => True |FS y => fun x' => x' = y end x with
  eq_refl => eq_refl
end.

(** [to_nat f] = p iff [f] is the p{^ th} element of [fin m]. *)
Fixpoint to_nat {m} (n : t m) : {i | i < m} :=
  match n with
    |@F1 j => exist _ 0 (Lt.lt_0_Sn j)
    |FS p => match to_nat p with |exist _ i P => exist _ (S i) (Lt.lt_n_S _ _ P) end
  end.

(** [of_nat p n] answers the p{^ th} element of [fin n] if p < n or a proof of
p >= n else *)
Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } :=
  match n with
   |0 => inright _ (ex_intro _ p eq_refl)
   |S n' => match p with
      |0 => inleft _ (F1)
      |S p' => match of_nat p' n' with
        |inleft f => inleft _ (FS f)
        |inright arg => inright _ (match arg with |ex_intro _ m e =>
          ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end)
      end
    end
  end.

(** [of_nat_lt p n H] answers the p{^ th} element of [fin n]
it behaves much better than [of_nat p n] on open term *)
Fixpoint of_nat_lt {p n : nat} : p < n -> t n :=
  match n with
    |0 => fun H : p < 0 => False_rect _ (Lt.lt_n_O p H)
    |S n' => match p with
      |0 => fun _ => @F1 n'
      |S p' => fun H => FS (of_nat_lt (Lt.lt_S_n _ _ H))
    end
  end.

Lemma of_nat_ext {p}{n} (h h' : p < n) : of_nat_lt h = of_nat_lt h'.
Proof.
 now rewrite (Peano_dec.le_unique _ _ h h').
Qed.

Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p.
Proof.
induction p; simpl.
- reflexivity.
- destruct (to_nat p); simpl in *. f_equal. subst p. apply of_nat_ext.
Qed.

Lemma to_nat_of_nat {p}{n} (h : p < n) : to_nat (of_nat_lt h) = exist _ p h.
Proof.
 revert n h.
 induction p; (destruct n ; intros h; [ destruct (Lt.lt_n_O _ h) | cbn]);
 [ | rewrite (IHp _ (Lt.lt_S_n p n h))];  f_equal; apply Peano_dec.le_unique.
Qed.

Lemma to_nat_inj {n} (p q : t n) :
 proj1_sig (to_nat p) = proj1_sig (to_nat q) -> p = q.
Proof.
 intro H.
 rewrite <- (of_nat_to_nat_inv p), <- (of_nat_to_nat_inv q).
 destruct (to_nat p) as (np,hp), (to_nat q) as (nq,hq); simpl in *.
 revert hp hq. rewrite H. apply of_nat_ext.
Qed.


(** [weak p f] answers a function witch is the identity for the p{^  th} first
element of [fin (p + m)] and [FS (FS .. (FS (f k)))] for [FS (FS .. (FS k))]
with p FSs *)
Fixpoint weak {m}{n} p (f : t m -> t n) :
  t (p + m) -> t (p + n) :=
match p as p' return t (p' + m) -> t (p' + n) with
  |0 => f
  |S p' => fun x => match x with
     |@F1 n' => fun eq : n' = p' + m => F1
     |@FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq))
  end (eq_refl _)
end.

(** The p{^ th} element of [fin m] viewed as the p{^ th} element of
[fin (m + n)] *)
Fixpoint L {m} n (p : t m) : t (m + n) :=
  match p with |F1 => F1 |FS p' => FS (L n p') end.

Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p).
Proof.
induction p.
- reflexivity.
- simpl; destruct (to_nat (L n p)); simpl in *; rewrite IHp. now destruct (to_nat p).
Qed.
 
(** The p{^ th} element of [fin m] viewed as the p{^ th} element of
[fin (n + m)]
Really really ineficient !!! *)
Definition L_R {m} n (p : t m) : t (n + m).
Proof.
induction n.
- exact p.
- exact ((fix LS k (p: t k) :=
    match p with
      |@F1 k' => @F1 (S k')
      |FS p' => FS (LS _ p')
    end) _ IHn).
Defined.

(** The p{^ th} element of [fin m] viewed as the (n + p){^ th} element of
[fin (n + m)] *)
Fixpoint R {m} n (p : t m) : t (n + m) :=
  match n with |0 => p |S n' => FS (R n' p) end.

Lemma R_sanity {m} n (p : t m) : proj1_sig (to_nat (R n p)) = n + proj1_sig (to_nat p).
Proof.
induction n.
- reflexivity.
- simpl; destruct (to_nat (R n p)); simpl in *; rewrite IHn. now destruct (to_nat p).
Qed.

Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) :=
match o with
  |@F1 m' => L (m' * n) p
  |FS o' => R n (depair o' p)
end.

Lemma depair_sanity {m n} (o : t m) (p : t n) :
  proj1_sig (to_nat (depair o p)) = n * (proj1_sig (to_nat o)) + (proj1_sig (to_nat p)).
Proof.
induction o ; simpl.
- rewrite L_sanity. now rewrite Mult.mult_0_r.

- rewrite R_sanity. rewrite IHo.
  rewrite Plus.plus_assoc. destruct (to_nat o); simpl; rewrite Mult.mult_succ_r.
    now rewrite (Plus.plus_comm n).
Qed.

Fixpoint eqb {m n} (p : t m) (q : t n) :=
match p, q with
| @F1 m', @F1 n' => EqNat.beq_nat m' n'
| FS _, F1 => false
| F1, FS _ => false
| FS p', FS q' => eqb p' q'
end.

Lemma eqb_nat_eq : forall m n (p : t m) (q : t n), eqb p q = true -> m = n.
Proof.
intros m n p; revert n; induction p; destruct q; simpl; intros; f_equal.
- now apply EqNat.beq_nat_true.
- easy.
- easy.
- eapply IHp. eassumption.
Qed.

Lemma eqb_eq : forall n (p q : t n), eqb p q = true <-> p = q.
Proof.
apply rect2; simpl; intros.
- split; intros ; [ reflexivity | now apply EqNat.beq_nat_true_iff ].
- now split.
- now split.
- eapply iff_trans.
 + eassumption.
 + split.
  * intros; now f_equal.
  * apply FS_inj.
Qed.

Lemma eq_dec {n} (x y : t n): {x = y} + {x <> y}.
Proof.
case_eq (eqb x y); intros.
- left; now apply eqb_eq.
- right. intros Heq. apply <- eqb_eq in Heq. congruence.
Defined.

Definition cast: forall {m} (v: t m) {n}, m = n -> t n.
Proof.
refine (fix cast {m} (v: t m) {struct v} :=
 match v in t m' return forall n, m' = n -> t n with
 |F1 => fun n => match n with
   | 0 => fun H => False_rect _ _
   | S n' => fun H => F1
 end
 |FS f => fun n => match n with
   | 0 => fun H => False_rect _ _
   | S n' => fun H => FS (cast f n' (f_equal pred H))
 end
end); discriminate.
Defined.