1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Bool Basics OrdersTac.
Require Export Orders.
Set Implicit Arguments.
Unset Strict Implicit.
(** * Properties of [compare] *)
Module Type CompareFacts (Import O:DecStrOrder').
Local Infix "?=" := compare (at level 70, no associativity).
Lemma compare_eq_iff x y : (x ?= y) = Eq <-> x==y.
Proof.
case compare_spec; intro H; split; try easy; intro EQ;
contradict H; rewrite EQ; apply irreflexivity.
Qed.
Lemma compare_eq x y : (x ?= y) = Eq -> x==y.
Proof.
apply compare_eq_iff.
Qed.
Lemma compare_lt_iff x y : (x ?= y) = Lt <-> x<y.
Proof.
case compare_spec; intro H; split; try easy; intro LT;
contradict LT; rewrite H; apply irreflexivity.
Qed.
Lemma compare_gt_iff x y : (x ?= y) = Gt <-> y<x.
Proof.
case compare_spec; intro H; split; try easy; intro LT;
contradict LT; rewrite H; apply irreflexivity.
Qed.
Lemma compare_nlt_iff x y : (x ?= y) <> Lt <-> ~(x<y).
Proof.
rewrite compare_lt_iff; intuition.
Qed.
Lemma compare_ngt_iff x y : (x ?= y) <> Gt <-> ~(y<x).
Proof.
rewrite compare_gt_iff; intuition.
Qed.
Hint Rewrite compare_eq_iff compare_lt_iff compare_gt_iff : order.
Instance compare_compat : Proper (eq==>eq==>Logic.eq) compare.
Proof.
intros x x' Hxx' y y' Hyy'.
case (compare_spec x' y'); autorewrite with order; now rewrite Hxx', Hyy'.
Qed.
Lemma compare_refl x : (x ?= x) = Eq.
Proof.
case compare_spec; intros; trivial; now elim irreflexivity with x.
Qed.
Lemma compare_antisym x y : (y ?= x) = CompOpp (x ?= y).
Proof.
case (compare_spec x y); simpl; autorewrite with order;
trivial; now symmetry.
Qed.
End CompareFacts.
(** * Properties of [OrderedTypeFull] *)
Module Type OrderedTypeFullFacts (Import O:OrderedTypeFull').
Module OrderTac := OTF_to_OrderTac O.
Ltac order := OrderTac.order.
Ltac iorder := intuition order.
Instance le_compat : Proper (eq==>eq==>iff) le.
Proof. repeat red; iorder. Qed.
Instance le_preorder : PreOrder le.
Proof. split; red; order. Qed.
Instance le_order : PartialOrder eq le.
Proof. compute; iorder. Qed.
Instance le_antisym : Antisymmetric _ eq le.
Proof. apply partial_order_antisym; auto with *. Qed.
Lemma le_not_gt_iff : forall x y, x<=y <-> ~y<x.
Proof. iorder. Qed.
Lemma lt_not_ge_iff : forall x y, x<y <-> ~y<=x.
Proof. iorder. Qed.
Lemma le_or_gt : forall x y, x<=y \/ y<x.
Proof. intros. rewrite le_lteq; destruct (O.compare_spec x y); auto. Qed.
Lemma lt_or_ge : forall x y, x<y \/ y<=x.
Proof. intros. rewrite le_lteq; destruct (O.compare_spec x y); iorder. Qed.
Lemma eq_is_le_ge : forall x y, x==y <-> x<=y /\ y<=x.
Proof. iorder. Qed.
Include CompareFacts O.
Lemma compare_le_iff x y : compare x y <> Gt <-> x<=y.
Proof.
rewrite le_not_gt_iff. apply compare_ngt_iff.
Qed.
Lemma compare_ge_iff x y : compare x y <> Lt <-> y<=x.
Proof.
rewrite le_not_gt_iff. apply compare_nlt_iff.
Qed.
End OrderedTypeFullFacts.
(** * Properties of [OrderedType] *)
Module OrderedTypeFacts (Import O: OrderedType').
Module OrderTac := OT_to_OrderTac O.
Ltac order := OrderTac.order.
Notation "x <= y" := (~lt y x) : order.
Infix "?=" := compare (at level 70, no associativity) : order.
Local Open Scope order.
Tactic Notation "elim_compare" constr(x) constr(y) :=
destruct (compare_spec x y).
Tactic Notation "elim_compare" constr(x) constr(y) "as" ident(h) :=
destruct (compare_spec x y) as [h|h|h].
(** The following lemmas are either re-phrasing of [eq_equiv] and
[lt_strorder] or immediately provable by [order]. Interest:
compatibility, test of order, etc *)
Definition eq_refl (x:t) : x==x := Equivalence_Reflexive x.
Definition eq_sym (x y:t) : x==y -> y==x := Equivalence_Symmetric x y.
Definition eq_trans (x y z:t) : x==y -> y==z -> x==z :=
Equivalence_Transitive x y z.
Definition lt_trans (x y z:t) : x<y -> y<z -> x<z :=
StrictOrder_Transitive x y z.
Definition lt_irrefl (x:t) : ~x<x := StrictOrder_Irreflexive x.
Include CompareFacts O.
Notation compare_le_iff := compare_ngt_iff (only parsing).
Notation compare_ge_iff := compare_nlt_iff (only parsing).
(** For compatibility reasons *)
Definition eq_dec := eq_dec.
Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}.
Proof.
intros x y; destruct (CompSpec2Type (compare_spec x y));
[ right | left | right ]; order.
Defined.
Definition eqb x y : bool := if eq_dec x y then true else false.
Lemma if_eq_dec : forall x y (B:Type)(b b':B),
(if eq_dec x y then b else b') =
(match compare x y with Eq => b | _ => b' end).
Proof.
intros; destruct eq_dec; elim_compare x y; auto; order.
Qed.
Lemma eqb_alt :
forall x y, eqb x y = match compare x y with Eq => true | _ => false end.
Proof.
unfold eqb; intros; apply if_eq_dec.
Qed.
Instance eqb_compat : Proper (eq==>eq==>Logic.eq) eqb.
Proof.
intros x x' Hxx' y y' Hyy'.
rewrite 2 eqb_alt, Hxx', Hyy'; auto.
Qed.
End OrderedTypeFacts.
(** * Tests of the order tactic
Is it at least capable of proving some basic properties ? *)
Module OrderedTypeTest (Import O:OrderedType').
Module Import MO := OrderedTypeFacts O.
Local Open Scope order.
Lemma lt_not_eq x y : x<y -> ~x==y. Proof. order. Qed.
Lemma lt_eq x y z : x<y -> y==z -> x<z. Proof. order. Qed.
Lemma eq_lt x y z : x==y -> y<z -> x<z. Proof. order. Qed.
Lemma le_eq x y z : x<=y -> y==z -> x<=z. Proof. order. Qed.
Lemma eq_le x y z : x==y -> y<=z -> x<=z. Proof. order. Qed.
Lemma neq_eq x y z : ~x==y -> y==z -> ~x==z. Proof. order. Qed.
Lemma eq_neq x y z : x==y -> ~y==z -> ~x==z. Proof. order. Qed.
Lemma le_lt_trans x y z : x<=y -> y<z -> x<z. Proof. order. Qed.
Lemma lt_le_trans x y z : x<y -> y<=z -> x<z. Proof. order. Qed.
Lemma le_trans x y z : x<=y -> y<=z -> x<=z. Proof. order. Qed.
Lemma le_antisym x y : x<=y -> y<=x -> x==y. Proof. order. Qed.
Lemma le_neq x y : x<=y -> ~x==y -> x<y. Proof. order. Qed.
Lemma neq_sym x y : ~x==y -> ~y==x. Proof. order. Qed.
Lemma lt_le x y : x<y -> x<=y. Proof. order. Qed.
Lemma gt_not_eq x y : y<x -> ~x==y. Proof. order. Qed.
Lemma eq_not_lt x y : x==y -> ~x<y. Proof. order. Qed.
Lemma eq_not_gt x y : x==y -> ~ y<x. Proof. order. Qed.
Lemma lt_not_gt x y : x<y -> ~ y<x. Proof. order. Qed.
Lemma eq_is_nlt_ngt x y : x==y <-> ~x<y /\ ~y<x.
Proof. intuition; order. Qed.
End OrderedTypeTest.
(** * Reversed OrderedTypeFull.
we can switch the orientation of the order. This is used for
example when deriving properties of [min] out of the ones of [max]
(see [GenericMinMax]).
*)
Module OrderedTypeRev (O:OrderedTypeFull) <: OrderedTypeFull.
Definition t := O.t.
Definition eq := O.eq.
Program Instance eq_equiv : Equivalence eq.
Definition eq_dec := O.eq_dec.
Definition lt := flip O.lt.
Definition le := flip O.le.
Instance lt_strorder: StrictOrder lt.
Proof. unfold lt; auto with *. Qed.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof. unfold lt; auto with *. Qed.
Lemma le_lteq : forall x y, le x y <-> lt x y \/ eq x y.
Proof. intros; unfold le, lt, flip. rewrite O.le_lteq; intuition. Qed.
Definition compare := flip O.compare.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
intros; unfold compare, eq, lt, flip.
destruct (O.compare_spec y x); auto with relations.
Qed.
End OrderedTypeRev.
Unset Implicit Arguments.
(** * Order relations derived from a [compare] function.
We factorize here some common properties for ZArith, NArith
and co, where [lt] and [le] are defined in terms of [compare].
Note that we do not require anything here concerning compatibility
of [compare] w.r.t [eq], nor anything concerning transitivity.
*)
Module Type CompareBasedOrder (Import E:EqLtLe')(Import C:HasCmp E).
Include CmpNotation E C.
Include IsEq E.
Axiom compare_eq_iff : forall x y, (x ?= y) = Eq <-> x == y.
Axiom compare_lt_iff : forall x y, (x ?= y) = Lt <-> x < y.
Axiom compare_le_iff : forall x y, (x ?= y) <> Gt <-> x <= y.
Axiom compare_antisym : forall x y, (y ?= x) = CompOpp (x ?= y).
End CompareBasedOrder.
Module Type CompareBasedOrderFacts
(Import E:EqLtLe')
(Import C:HasCmp E)
(Import O:CompareBasedOrder E C).
Lemma compare_spec x y : CompareSpec (x==y) (x<y) (y<x) (x?=y).
Proof.
case_eq (compare x y); intros H; constructor.
now apply compare_eq_iff.
now apply compare_lt_iff.
rewrite compare_antisym, CompOpp_iff in H. now apply compare_lt_iff.
Qed.
Lemma compare_eq x y : (x ?= y) = Eq -> x==y.
Proof.
apply compare_eq_iff.
Qed.
Lemma compare_refl x : (x ?= x) = Eq.
Proof.
now apply compare_eq_iff.
Qed.
Lemma compare_gt_iff x y : (x ?= y) = Gt <-> y<x.
Proof.
now rewrite <- compare_lt_iff, compare_antisym, CompOpp_iff.
Qed.
Lemma compare_ge_iff x y : (x ?= y) <> Lt <-> y<=x.
Proof.
now rewrite <- compare_le_iff, compare_antisym, CompOpp_iff.
Qed.
Lemma compare_ngt_iff x y : (x ?= y) <> Gt <-> ~(y<x).
Proof.
rewrite compare_gt_iff; intuition.
Qed.
Lemma compare_nlt_iff x y : (x ?= y) <> Lt <-> ~(x<y).
Proof.
rewrite compare_lt_iff; intuition.
Qed.
Lemma compare_nle_iff x y : (x ?= y) = Gt <-> ~(x<=y).
Proof.
rewrite <- compare_le_iff.
destruct compare; split; easy || now destruct 1.
Qed.
Lemma compare_nge_iff x y : (x ?= y) = Lt <-> ~(y<=x).
Proof.
now rewrite <- compare_nle_iff, compare_antisym, CompOpp_iff.
Qed.
Lemma lt_irrefl x : ~ (x<x).
Proof.
now rewrite <- compare_lt_iff, compare_refl.
Qed.
Lemma lt_eq_cases n m : n <= m <-> n < m \/ n==m.
Proof.
rewrite <- compare_lt_iff, <- compare_le_iff, <- compare_eq_iff.
destruct (n ?= m); now intuition.
Qed.
End CompareBasedOrderFacts.
(** Basic facts about boolean comparisons *)
Module Type BoolOrderFacts
(Import E:EqLtLe')
(Import C:HasCmp E)
(Import F:HasBoolOrdFuns' E)
(Import O:CompareBasedOrder E C)
(Import S:BoolOrdSpecs E F).
Include CompareBasedOrderFacts E C O.
(** Nota : apart from [eqb_compare] below, facts about [eqb]
are in BoolEqualityFacts *)
(** Alternate specifications based on [BoolSpec] and [reflect] *)
Lemma leb_spec0 x y : reflect (x<=y) (x<=?y).
Proof.
apply iff_reflect. symmetry. apply leb_le.
Defined.
Lemma leb_spec x y : BoolSpec (x<=y) (y<x) (x<=?y).
Proof.
case leb_spec0; constructor; trivial.
now rewrite <- compare_lt_iff, compare_nge_iff.
Qed.
Lemma ltb_spec0 x y : reflect (x<y) (x<?y).
Proof.
apply iff_reflect. symmetry. apply ltb_lt.
Defined.
Lemma ltb_spec x y : BoolSpec (x<y) (y<=x) (x<?y).
Proof.
case ltb_spec0; constructor; trivial.
now rewrite <- compare_le_iff, compare_ngt_iff.
Qed.
(** Negated variants of the specifications *)
Lemma leb_nle x y : x <=? y = false <-> ~ (x <= y).
Proof.
now rewrite <- not_true_iff_false, leb_le.
Qed.
Lemma leb_gt x y : x <=? y = false <-> y < x.
Proof.
now rewrite leb_nle, <- compare_lt_iff, compare_nge_iff.
Qed.
Lemma ltb_nlt x y : x <? y = false <-> ~ (x < y).
Proof.
now rewrite <- not_true_iff_false, ltb_lt.
Qed.
Lemma ltb_ge x y : x <? y = false <-> y <= x.
Proof.
now rewrite ltb_nlt, <- compare_le_iff, compare_ngt_iff.
Qed.
(** Basic equality laws for boolean tests *)
Lemma leb_refl x : x <=? x = true.
Proof.
apply leb_le. apply lt_eq_cases. now right.
Qed.
Lemma leb_antisym x y : y <=? x = negb (x <? y).
Proof.
apply eq_true_iff_eq. now rewrite negb_true_iff, leb_le, ltb_ge.
Qed.
Lemma ltb_irrefl x : x <? x = false.
Proof.
apply ltb_ge. apply lt_eq_cases. now right.
Qed.
Lemma ltb_antisym x y : y <? x = negb (x <=? y).
Proof.
apply eq_true_iff_eq. now rewrite negb_true_iff, ltb_lt, leb_gt.
Qed.
(** Relation bewteen [compare] and the boolean comparisons *)
Lemma eqb_compare x y :
(x =? y) = match compare x y with Eq => true | _ => false end.
Proof.
apply eq_true_iff_eq. rewrite eqb_eq, <- compare_eq_iff.
now destruct compare.
Qed.
Lemma ltb_compare x y :
(x <? y) = match compare x y with Lt => true | _ => false end.
Proof.
apply eq_true_iff_eq. rewrite ltb_lt, <- compare_lt_iff.
now destruct compare.
Qed.
Lemma leb_compare x y :
(x <=? y) = match compare x y with Gt => false | _ => true end.
Proof.
apply eq_true_iff_eq. rewrite leb_le, <- compare_le_iff.
now destruct compare.
Qed.
End BoolOrderFacts.
|