aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Structures/GenericMinMax.v
blob: 5583142f848cba0b3686b05924752513c0d0caf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

Require Import Orders OrdersTac OrdersFacts Setoid Morphisms Basics.

(** * A Generic construction of min and max *)

(** ** First, an interface for types with [max] and/or [min] *)

Module Type HasMax (Import E:EqLe').
 Parameter Inline max : t -> t -> t.
 Parameter max_l : forall x y, y<=x -> max x y == x.
 Parameter max_r : forall x y, x<=y -> max x y == y.
End HasMax.

Module Type HasMin (Import E:EqLe').
 Parameter Inline min : t -> t -> t.
 Parameter min_l : forall x y, x<=y -> min x y == x.
 Parameter min_r : forall x y, y<=x -> min x y == y.
End HasMin.

Module Type HasMinMax (E:EqLe) := HasMax E <+ HasMin E.


(** ** Any [OrderedTypeFull] can be equipped by [max] and [min]
    based on the compare function. *)

Definition gmax {A} (cmp : A->A->comparison) x y :=
 match cmp x y with Lt => y | _ => x end.
Definition gmin {A} (cmp : A->A->comparison) x y :=
 match cmp x y with Gt => y | _ => x end.

Module GenericMinMax (Import O:OrderedTypeFull') <: HasMinMax O.

 Definition max := gmax O.compare.
 Definition min := gmin O.compare.

 Lemma ge_not_lt : forall x y, y<=x -> x<y -> False.
 Proof.
 intros x y H H'.
 apply (StrictOrder_Irreflexive x).
 rewrite le_lteq in *; destruct H as [H|H].
 transitivity y; auto.
 rewrite H in H'; auto.
 Qed.

 Lemma max_l : forall x y, y<=x -> max x y == x.
 Proof.
 intros. unfold max, gmax. case compare_spec; auto with relations.
 intros; elim (ge_not_lt x y); auto.
 Qed.

 Lemma max_r : forall x y, x<=y -> max x y == y.
 Proof.
 intros. unfold max, gmax. case compare_spec; auto with relations.
 intros; elim (ge_not_lt y x); auto.
 Qed.

 Lemma min_l : forall x y, x<=y -> min x y == x.
 Proof.
 intros. unfold min, gmin. case compare_spec; auto with relations.
 intros; elim (ge_not_lt y x); auto.
 Qed.

 Lemma min_r : forall x y, y<=x -> min x y == y.
 Proof.
 intros. unfold min, gmin. case compare_spec; auto with relations.
 intros; elim (ge_not_lt x y); auto.
 Qed.

End GenericMinMax.


(** ** Consequences of the minimalist interface: facts about [max]. *)

Module MaxLogicalProperties (Import O:TotalOrder')(Import M:HasMax O).
 Module Import Private_Tac := !MakeOrderTac O.

(** An alternative caracterisation of [max], equivalent to
    [max_l /\ max_r] *)

Lemma max_spec : forall n m,
  (n < m /\ max n m == m)  \/ (m <= n /\ max n m == n).
Proof.
 intros n m.
 destruct (lt_total n m); [left|right].
 split; auto. apply max_r. rewrite le_lteq; auto.
 assert (m <= n) by (rewrite le_lteq; intuition).
 split; auto. apply max_l; auto.
Qed.

(** A more symmetric version of [max_spec], based only on [le].
    Beware that left and right alternatives overlap. *)

Lemma max_spec_le : forall n m,
 (n <= m /\ max n m == m) \/ (m <= n /\ max n m == n).
Proof.
 intros. destruct (max_spec n m); [left|right]; intuition; order.
Qed.

Instance : Proper (eq==>eq==>iff) le.
Proof. repeat red. intuition order. Qed.

Instance max_compat : Proper (eq==>eq==>eq) max.
Proof.
intros x x' Hx y y' Hy.
assert (H1 := max_spec x y). assert (H2 := max_spec x' y').
set (m := max x y) in *; set (m' := max x' y') in *; clearbody m m'.
rewrite <- Hx, <- Hy in *.
destruct (lt_total x y); intuition order.
Qed.


(** A function satisfying the same specification is equal to [max]. *)

Lemma max_unicity : forall n m p,
 ((n < m /\ p == m)  \/ (m <= n /\ p == n)) ->  p == max n m.
Proof.
 intros. assert (Hm := max_spec n m).
 destruct (lt_total n m); intuition; order.
Qed.

Lemma max_unicity_ext : forall f,
 (forall n m, (n < m /\ f n m == m)  \/ (m <= n /\ f n m == n)) ->
 (forall n m, f n m == max n m).
Proof.
 intros. apply max_unicity; auto.
Qed.

(** [max] commutes with monotone functions. *)

Lemma max_mono: forall f,
 (Proper (eq ==> eq) f) ->
 (Proper (le ==> le) f) ->
 forall x y, max (f x) (f y) == f (max x y).
Proof.
 intros f Eqf Lef x y.
 destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E;
  destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
 assert (f x <= f y) by (apply Lef; order). order.
 assert (f y <= f x) by (apply Lef; order). order.
Qed.

(** *** Semi-lattice algebraic properties of [max] *)

Lemma max_id : forall n, max n n == n.
Proof.
 intros. destruct (max_spec n n); intuition.
Qed.

Notation max_idempotent := max_id (only parsing).

Lemma max_assoc : forall m n p, max m (max n p) == max (max m n) p.
Proof.
 intros.
 destruct (max_spec n p) as [(H,Eq)|(H,Eq)]; rewrite Eq.
 destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'.
 destruct (max_spec m p); intuition; order. order.
 destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'. order.
 destruct (max_spec m p); intuition; order.
Qed.

Lemma max_comm : forall n m, max n m == max m n.
Proof.
 intros.
 destruct (max_spec n m) as [(H,Eq)|(H,Eq)]; rewrite Eq.
 destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
 destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
Qed.

(** *** Least-upper bound properties of [max] *)

Lemma le_max_l : forall n m, n <= max n m.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma le_max_r : forall n m, m <= max n m.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma max_l_iff : forall n m, max n m == n <-> m <= n.
Proof.
 split. intro H; rewrite <- H. apply le_max_r. apply max_l.
Qed.

Lemma max_r_iff : forall n m, max n m == m <-> n <= m.
Proof.
 split. intro H; rewrite <- H. apply le_max_l. apply max_r.
Qed.

Lemma max_le : forall n m p, p <= max n m -> p <= n \/ p <= m.
Proof.
 intros n m p H; destruct (max_spec n m);
  [right|left]; intuition; order.
Qed.

Lemma max_le_iff : forall n m p, p <= max n m <-> p <= n \/ p <= m.
Proof.
 intros. split. apply max_le.
 destruct (max_spec n m); intuition; order.
Qed.

Lemma max_lt_iff : forall n m p, p < max n m <-> p < n \/ p < m.
Proof.
 intros. destruct (max_spec n m); intuition;
  order || (right; order) || (left; order).
Qed.

Lemma max_lub_l : forall n m p, max n m <= p -> n <= p.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma max_lub_r : forall n m p, max n m <= p -> m <= p.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma max_lub : forall n m p, n <= p -> m <= p -> max n m <= p.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma max_lub_iff : forall n m p, max n m <= p <-> n <= p /\ m <= p.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma max_lub_lt : forall n m p, n < p -> m < p -> max n m < p.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma max_lub_lt_iff : forall n m p, max n m < p <-> n < p /\ m < p.
Proof.
 intros; destruct (max_spec n m); intuition; order.
Qed.

Lemma max_le_compat_l : forall n m p, n <= m -> max p n <= max p m.
Proof.
 intros.
 destruct (max_spec p n) as [(LT,E)|(LE,E)]; rewrite E.
 assert (LE' := le_max_r p m). order.
 apply le_max_l.
Qed.

Lemma max_le_compat_r : forall n m p, n <= m -> max n p <= max m p.
Proof.
 intros. rewrite (max_comm n p), (max_comm m p).
 auto using max_le_compat_l.
Qed.

Lemma max_le_compat : forall n m p q, n <= m -> p <= q ->
 max n p <= max m q.
Proof.
 intros  n m p q Hnm Hpq.
 assert (LE := max_le_compat_l _ _ m Hpq).
 assert (LE' := max_le_compat_r _ _ p Hnm).
 order.
Qed.

End MaxLogicalProperties.


(** ** Properties concernant [min], then both [min] and [max].

   To avoid too much code duplication, we exploit that [min] can be
   seen as a [max] of the reversed order.
*)

Module MinMaxLogicalProperties (Import O:TotalOrder')(Import M:HasMinMax O).
 Include MaxLogicalProperties O M.
 Import Private_Tac.

 Module Import Private_Rev.
 Module ORev := TotalOrderRev O.
 Module MRev <: HasMax ORev.
  Definition max x y := M.min y x.
  Definition max_l x y := M.min_r y x.
  Definition max_r x y := M.min_l y x.
 End MRev.
 Module MPRev := MaxLogicalProperties ORev MRev.
 End Private_Rev.

Instance min_compat : Proper (eq==>eq==>eq) min.
Proof. intros x x' Hx y y' Hy. apply MPRev.max_compat; assumption. Qed.

Lemma min_spec : forall n m,
 (n < m /\ min n m == n) \/ (m <= n /\ min n m == m).
Proof. intros. exact (MPRev.max_spec m n). Qed.

Lemma min_spec_le : forall n m,
 (n <= m /\ min n m == n) \/ (m <= n /\ min n m == m).
Proof. intros. exact (MPRev.max_spec_le m n). Qed.

Lemma min_mono: forall f,
 (Proper (eq ==> eq) f) ->
 (Proper (le ==> le) f) ->
 forall x y, min (f x) (f y) == f (min x y).
Proof.
 intros. apply MPRev.max_mono; auto. compute in *; eauto.
Qed.

Lemma min_unicity : forall n m p,
 ((n < m /\ p == n)  \/ (m <= n /\ p == m)) ->  p == min n m.
Proof. intros n m p. apply MPRev.max_unicity. Qed.

Lemma min_unicity_ext : forall f,
 (forall n m, (n < m /\ f n m == n)  \/ (m <= n /\ f n m == m)) ->
 (forall n m, f n m == min n m).
Proof. intros f H n m. apply MPRev.max_unicity, H; auto. Qed.

Lemma min_id : forall n, min n n == n.
Proof. intros. exact (MPRev.max_id n). Qed.

Notation min_idempotent := min_id (only parsing).

Lemma min_assoc : forall m n p, min m (min n p) == min (min m n) p.
Proof. intros. symmetry; apply MPRev.max_assoc. Qed.

Lemma min_comm : forall n m, min n m == min m n.
Proof. intros. exact (MPRev.max_comm m n). Qed.

Lemma le_min_r : forall n m, min n m <= m.
Proof. intros. exact (MPRev.le_max_l m n). Qed.

Lemma le_min_l : forall n m, min n m <= n.
Proof. intros. exact (MPRev.le_max_r m n). Qed.

Lemma min_l_iff : forall n m, min n m == n <-> n <= m.
Proof. intros n m. exact (MPRev.max_r_iff m n). Qed.

Lemma min_r_iff : forall n m, min n m == m <-> m <= n.
Proof. intros n m. exact (MPRev.max_l_iff m n). Qed.

Lemma min_le : forall n m p, min n m <= p -> n <= p \/ m <= p.
Proof. intros n m p H. destruct (MPRev.max_le _ _ _ H); auto. Qed.

Lemma min_le_iff : forall n m p, min n m <= p <-> n <= p \/ m <= p.
Proof. intros n m p. rewrite (MPRev.max_le_iff m n p); intuition. Qed.

Lemma min_lt_iff : forall n m p, min n m < p <-> n < p \/ m < p.
Proof. intros n m p. rewrite (MPRev.max_lt_iff m n p); intuition. Qed.

Lemma min_glb_l : forall n m p, p <= min n m -> p <= n.
Proof. intros n m. exact (MPRev.max_lub_r m n). Qed.

Lemma min_glb_r : forall n m p, p <= min n m -> p <= m.
Proof. intros n m. exact (MPRev.max_lub_l m n). Qed.

Lemma min_glb : forall n m p, p <= n -> p <= m -> p <= min n m.
Proof. intros. apply MPRev.max_lub; auto. Qed.

Lemma min_glb_iff : forall n m p, p <= min n m <-> p <= n /\ p <= m.
Proof. intros. rewrite (MPRev.max_lub_iff m n p); intuition. Qed.

Lemma min_glb_lt : forall n m p, p < n -> p < m -> p < min n m.
Proof. intros. apply MPRev.max_lub_lt; auto. Qed.

Lemma min_glb_lt_iff : forall n m p, p < min n m <-> p < n /\ p < m.
Proof. intros. rewrite (MPRev.max_lub_lt_iff m n p); intuition. Qed.

Lemma min_le_compat_l : forall n m p, n <= m -> min p n <= min p m.
Proof. intros n m. exact (MPRev.max_le_compat_r m n). Qed.

Lemma min_le_compat_r : forall n m p, n <= m -> min n p <= min m p.
Proof. intros n m. exact (MPRev.max_le_compat_l m n). Qed.

Lemma min_le_compat : forall n m p q, n <= m -> p <= q ->
 min n p <= min m q.
Proof. intros. apply MPRev.max_le_compat; auto. Qed.


(** *** Combined properties of min and max *)

Lemma min_max_absorption : forall n m, max n (min n m) == n.
Proof.
 intros.
 destruct (min_spec n m) as [(C,E)|(C,E)]; rewrite E.
 apply max_l. order.
 destruct (max_spec n m); intuition; order.
Qed.

Lemma max_min_absorption : forall n m, min n (max n m) == n.
Proof.
 intros.
 destruct (max_spec n m) as [(C,E)|(C,E)]; rewrite E.
 destruct (min_spec n m) as [(C',E')|(C',E')]; auto. order.
 apply min_l; auto. order.
Qed.

(** Distributivity *)

Lemma max_min_distr : forall n m p,
 max n (min m p) == min (max n m) (max n p).
Proof.
 intros. symmetry. apply min_mono.
 eauto with *.
 repeat red; intros. apply max_le_compat_l; auto.
Qed.

Lemma min_max_distr : forall n m p,
 min n (max m p) == max (min n m) (min n p).
Proof.
 intros. symmetry. apply max_mono.
 eauto with *.
 repeat red; intros. apply min_le_compat_l; auto.
Qed.

(** Modularity *)

Lemma max_min_modular : forall n m p,
 max n (min m (max n p)) == min (max n m) (max n p).
Proof.
 intros. rewrite <- max_min_distr.
 destruct (max_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *.
 destruct (min_spec m n) as [(C',E')|(C',E')]; rewrite E'.
 rewrite 2 max_l; try order. rewrite min_le_iff; auto.
 rewrite 2 max_l; try order. rewrite min_le_iff; auto.
Qed.

Lemma min_max_modular : forall n m p,
 min n (max m (min n p)) == max (min n m) (min n p).
Proof.
 intros. rewrite <- min_max_distr.
 destruct (min_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *.
 destruct (max_spec m n) as [(C',E')|(C',E')]; rewrite E'.
 rewrite 2 min_l; try order. rewrite max_le_iff; right; order.
 rewrite 2 min_l; try order. rewrite max_le_iff; auto.
Qed.

(** Disassociativity *)

Lemma max_min_disassoc : forall n m p,
 min n (max m p) <= max (min n m) p.
Proof.
 intros. rewrite min_max_distr.
 auto using max_le_compat_l, le_min_r.
Qed.

(** Anti-monotonicity swaps the role of [min] and [max] *)

Lemma max_min_antimono : forall f,
 Proper (eq==>eq) f ->
 Proper (le==>inverse le) f ->
 forall x y, max (f x) (f y) == f (min x y).
Proof.
 intros f Eqf Lef x y.
 destruct (min_spec x y) as [(H,E)|(H,E)]; rewrite E;
  destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
 assert (f y <= f x) by (apply Lef; order). order.
 assert (f x <= f y) by (apply Lef; order). order.
Qed.

Lemma min_max_antimono : forall f,
 Proper (eq==>eq) f ->
 Proper (le==>inverse le) f ->
 forall x y, min (f x) (f y) == f (max x y).
Proof.
 intros f Eqf Lef x y.
 destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E;
  destruct (min_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
 assert (f y <= f x) by (apply Lef; order). order.
 assert (f x <= f y) by (apply Lef; order). order.
Qed.

End MinMaxLogicalProperties.


(** ** Properties requiring a decidable order *)

Module MinMaxDecProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O).

(** Induction principles for [max]. *)

Lemma max_case_strong : forall n m (P:t -> Type),
  (forall x y, x==y -> P x -> P y) ->
  (m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
Proof.
intros n m P Compat Hl Hr.
destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT].
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat m), Hr; auto. symmetry; apply max_r; auto.
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat m), Hr; auto. symmetry; apply max_r; auto.
assert (m<=n) by (rewrite le_lteq; auto).
apply (Compat n), Hl; auto. symmetry; apply max_l; auto.
Defined.

Lemma max_case : forall n m (P:t -> Type),
  (forall x y, x == y -> P x -> P y) ->
  P n -> P m -> P (max n m).
Proof. intros. apply max_case_strong; auto. Defined.

(** [max] returns one of its arguments. *)

Lemma max_dec : forall n m, {max n m == n} + {max n m == m}.
Proof.
 intros n m. apply max_case; auto with relations.
 intros x y H [E|E]; [left|right]; rewrite <-H; auto.
Defined.

(** Idem for [min] *)

Lemma min_case_strong : forall n m (P:O.t -> Type),
 (forall x y, x == y -> P x -> P y) ->
 (n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
Proof.
intros n m P Compat Hl Hr.
destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT].
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat n), Hl; auto. symmetry; apply min_l; auto.
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat n), Hl; auto. symmetry; apply min_l; auto.
assert (m<=n) by (rewrite le_lteq; auto).
apply (Compat m), Hr; auto. symmetry; apply min_r; auto.
Defined.

Lemma min_case : forall n m (P:O.t -> Type),
  (forall x y, x == y -> P x -> P y) ->
  P n -> P m -> P (min n m).
Proof. intros. apply min_case_strong; auto. Defined.

Lemma min_dec : forall n m, {min n m == n} + {min n m == m}.
Proof.
 intros. apply min_case; auto with relations.
 intros x y H [E|E]; [left|right]; rewrite <- E; auto with relations.
Defined.

End MinMaxDecProperties.

Module MinMaxProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O).
 Module OT := OTF_to_TotalOrder O.
 Include MinMaxLogicalProperties OT M.
 Include MinMaxDecProperties O M.
 Definition max_l := max_l.
 Definition max_r := max_r.
 Definition min_l := min_l.
 Definition min_r := min_r.
 Notation max_monotone := max_mono.
 Notation min_monotone := min_mono.
 Notation max_min_antimonotone := max_min_antimono.
 Notation min_max_antimonotone := min_max_antimono.
End MinMaxProperties.


(** ** When the equality is Leibniz, we can skip a few [Proper] precondition. *)

Module UsualMinMaxLogicalProperties
 (Import O:UsualTotalOrder')(Import M:HasMinMax O).

 Include MinMaxLogicalProperties O M.

 Lemma max_monotone : forall f, Proper (le ==> le) f ->
  forall x y, max (f x) (f y) = f (max x y).
 Proof. intros; apply max_mono; auto. congruence. Qed.

 Lemma min_monotone : forall f, Proper (le ==> le) f ->
  forall x y, min (f x) (f y) = f (min x y).
 Proof. intros; apply min_mono; auto. congruence. Qed.

 Lemma min_max_antimonotone : forall f, Proper (le ==> inverse le) f ->
  forall x y, min (f x) (f y) = f (max x y).
 Proof. intros; apply min_max_antimono; auto. congruence. Qed.

 Lemma max_min_antimonotone : forall f, Proper (le ==> inverse le) f ->
  forall x y, max (f x) (f y) = f (min x y).
 Proof. intros; apply max_min_antimono; auto. congruence. Qed.

End UsualMinMaxLogicalProperties.


Module UsualMinMaxDecProperties
 (Import O:UsualOrderedTypeFull')(Import M:HasMinMax O).

 Module Import Private_Dec := MinMaxDecProperties O M.

 Lemma max_case_strong : forall n m (P:t -> Type),
  (m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
 Proof. intros; apply max_case_strong; auto. congruence. Defined.

 Lemma max_case : forall n m (P:t -> Type),
  P n -> P m -> P (max n m).
 Proof. intros; apply max_case_strong; auto. Defined.

 Lemma max_dec : forall n m, {max n m = n} + {max n m = m}.
 Proof. exact max_dec. Defined.

 Lemma min_case_strong : forall n m (P:O.t -> Type),
  (n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
 Proof. intros; apply min_case_strong; auto. congruence. Defined.

 Lemma min_case : forall n m (P:O.t -> Type),
  P n -> P m -> P (min n m).
 Proof. intros. apply min_case_strong; auto. Defined.

 Lemma min_dec : forall n m, {min n m = n} + {min n m = m}.
 Proof. exact min_dec. Defined.

End UsualMinMaxDecProperties.

Module UsualMinMaxProperties
 (Import O:UsualOrderedTypeFull')(Import M:HasMinMax O).
 Module OT := OTF_to_TotalOrder O.
 Include UsualMinMaxLogicalProperties OT M.
 Include UsualMinMaxDecProperties O M.
 Definition max_l := max_l.
 Definition max_r := max_r.
 Definition min_l := min_l.
 Definition min_r := min_r.
End UsualMinMaxProperties.


(** From [TotalOrder] and [HasMax] and [HasEqDec], we can prove
    that the order is decidable and build an [OrderedTypeFull]. *)

Module TOMaxEqDec_to_Compare
 (Import O:TotalOrder')(Import M:HasMax O)(Import E:HasEqDec O) <: HasCompare O.

 Definition compare x y :=
  if eq_dec x y then Eq
  else if eq_dec (M.max x y) y then Lt else Gt.

 Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
 Proof.
 intros; unfold compare; repeat destruct eq_dec; auto; constructor.
 destruct (lt_total x y); auto.
 absurd (x==y); auto. transitivity (max x y); auto.
 symmetry. apply max_l. rewrite le_lteq; intuition.
 destruct (lt_total y x); auto.
 absurd (max x y == y); auto. apply max_r; rewrite le_lteq; intuition.
 Qed.

End TOMaxEqDec_to_Compare.

Module TOMaxEqDec_to_OTF (O:TotalOrder)(M:HasMax O)(E:HasEqDec O)
 <: OrderedTypeFull
 := O <+ E <+ TOMaxEqDec_to_Compare O M E.



(** TODO: Some Remaining questions...

--> Compare with a type-classes version ?

--> Is max_unicity and max_unicity_ext really convenient to express
    that any possible definition of max will in fact be equivalent ?

--> Is it possible to avoid copy-paste about min even more ?

*)