aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Structures/GenericMinMax.v
blob: f5ff27888fc910046d7c6cb361cddbbf8f4fd495 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

Require Import OrderedType2 OrderedType2Facts Setoid Morphisms Basics.

(** * A Generic construction of min and max based on OrderedType *)

(** ** First, an interface for types with [max] and/or [min] *)

Module Type HasMax (Import O:OrderedTypeFull).
 Parameter Inline max : t -> t -> t.
 Parameter max_spec : forall x y,
   (lt x y /\ eq (max x y) y)  \/  (le y x /\ eq (max x y) x).
End HasMax.

Module Type HasMin (Import O:OrderedTypeFull).
 Parameter Inline min : t -> t -> t.
 Parameter min_spec : forall x y,
   (lt x y /\ eq (min x y) x)  \/  (le y x /\ eq (min x y) y).
End HasMin.

Module Type HasMinMax (Import O:OrderedTypeFull).
 Include Type HasMax O.
 Include Type HasMin O.
End HasMinMax.


(** ** Any [OrderedTypeFull] can be equipped by [max] and [min]
    based on the compare function. *)

Definition gmax {A} (cmp : A->A->comparison) x y :=
 match cmp x y with Lt => y | _ => x end.
Definition gmin {A} (cmp : A->A->comparison) x y :=
 match cmp x y with Gt => y | _ => x end.

Module GenericMinMax (Import O:OrderedTypeFull) <: HasMinMax O.

 Definition max := gmax O.compare.
 Definition min := gmin O.compare.

 Lemma max_spec : forall x y,
   (lt x y /\ eq (max x y) y)  \/  (le y x /\ eq (max x y) x).
 Proof.
  intros. rewrite le_lteq. unfold max, gmax.
  destruct (compare_spec x y); auto with relations.
 Qed.

 Lemma min_spec : forall x y,
   (lt x y /\ eq (min x y) x)  \/  (le y x /\ eq (min x y) y).
 Proof.
  intros. rewrite le_lteq. unfold min, gmin.
  destruct (compare_spec x y); auto with relations.
 Qed.

End GenericMinMax.


(** ** Consequences of the minimalist interface: facts about [max]. *)

Module MaxProperties (Import O:OrderedTypeFull)(Import M:HasMax O).
 Module Import OF := OrderedTypeFullFacts O.
 Infix "<" := lt.
 Infix "==" := eq (at level 70).
 Infix "<=" := le.

Instance max_compat : Proper (eq==>eq==>eq) max.
Proof.
intros x x' Hx y y' Hy.
assert (H1 := max_spec x y). assert (H2 := max_spec x' y').
set (m := max x y) in *; set (m' := max x' y') in *; clearbody m m'.
rewrite <- Hx, <- Hy in *.
destruct (compare_spec x y); intuition; order.
Qed.

(** An alias to the [max_spec] of the interface. *)

Lemma max_spec : forall n m,
  (n < m /\ max n m == m)  \/ (m <= n /\ max n m == n).
Proof. exact max_spec. Qed.

(** A more symmetric version of [max_spec], based only on [le].
    Beware that left and right alternatives overlap. *)

Lemma max_spec_le : forall n m,
 (n <= m /\ max n m == m) \/ (m <= n /\ max n m == n).
Proof.
 intros. destruct (max_spec n m); [left|right]; intuition; order.
Qed.

(** Another function satisfying the same specification is equal to [max]. *)

Lemma max_unicity : forall n m p,
 ((n < m /\ p == m)  \/ (m <= n /\ p == n)) ->  p == max n m.
Proof.
 intros. assert (Hm := max_spec n m).
 destruct (compare_spec n m); intuition; order.
Qed.

Lemma max_unicity_ext : forall f,
 (forall n m, (n < m /\ f n m == m)  \/ (m <= n /\ f n m == n)) ->
 (forall n m, f n m == max n m).
Proof.
 intros. apply max_unicity; auto.
Qed.

(** Induction principles for [max]. *)

Lemma max_case_strong : forall n m (P:t -> Type),
  (forall x y, x==y -> P x -> P y) ->
  (m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
Proof.
intros n m P Compat Hl Hr.
assert (H:=compare_spec n m). assert (H':=max_spec n m).
destruct (compare n m).
apply (Compat m), Hr; inversion_clear H; intuition; order.
apply (Compat m), Hr; inversion_clear H; intuition; order.
apply (Compat n), Hl; inversion_clear H; intuition; order.
Qed.

Lemma max_case : forall n m (P:t -> Type),
  (forall x y, x == y -> P x -> P y) ->
  P n -> P m -> P (max n m).
Proof.
 intros. apply max_case_strong; auto.
Defined.

(** [max] returns one of its arguments. *)

Lemma max_dec : forall n m, {max n m == n} + {max n m == m}.
Proof.
 intros n m. apply max_case; auto with relations.
 intros x y H [E|E]; [left|right]; order.
Defined.

(** [max] commutes with monotone functions. *)

Lemma max_monotone: forall f,
 (Proper (eq ==> eq) f) ->
 (Proper (le ==> le) f) ->
 forall x y, max (f x) (f y) == f (max x y).
Proof.
 intros f Eqf Lef x y.
 destruct (M.max_spec x y) as [(H,E)|(H,E)]; rewrite E;
  destruct (M.max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
 assert (f x <= f y) by (apply Lef; order). order.
 assert (f y <= f x) by (apply Lef; order). order.
Qed.

(** *** Semi-lattice algebraic properties of [max] *)

Lemma max_id : forall n, max n n == n.
Proof.
 intros. destruct (M.max_spec n n); intuition.
Qed.

Lemma max_assoc : forall m n p, max m (max n p) == max (max m n) p.
Proof.
 intros.
 destruct (M.max_spec n p) as [(H,Eq)|(H,Eq)]; rewrite Eq.
 destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'.
 destruct (max_spec m p); intuition; order. order.
 destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'. order.
 destruct (max_spec m p); intuition; order.
Qed.

Lemma max_comm : forall n m, max n m == max m n.
Proof.
 intros.
 destruct (M.max_spec n m) as [(H,Eq)|(H,Eq)]; rewrite Eq.
 destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
 destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
Qed.

(** *** Least-upper bound properties of [max] *)

Lemma max_l : forall n m, m <= n -> max n m == n.
Proof.
 intros. destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_r : forall n m, n <= m -> max n m == m.
Proof.
 intros. destruct (M.max_spec n m); intuition; order.
Qed.

Lemma le_max_l : forall n m, n <= max n m.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma le_max_r : forall n m, m <= max n m.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_le : forall n m p, p <= max n m -> p <= n \/ p <= m.
Proof.
 intros n m p H; destruct (M.max_spec n m);
  [right|left]; intuition; order.
Qed.

Lemma max_le_iff : forall n m p, p <= max n m <-> p <= n \/ p <= m.
Proof.
 intros. split. apply max_le.
 destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_lt_iff : forall n m p, p < max n m <-> p < n \/ p < m.
Proof.
 intros. destruct (M.max_spec n m); intuition;
  order || (right; order) || (left; order).
Qed.

Lemma max_lub_l : forall n m p, max n m <= p -> n <= p.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_lub_r : forall n m p, max n m <= p -> m <= p.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_lub : forall n m p, n <= p -> m <= p -> max n m <= p.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_lub_iff : forall n m p, max n m <= p <-> n <= p /\ m <= p.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_lub_lt : forall n m p, n < p -> m < p -> max n m < p.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_lub_lt_iff : forall n m p, max n m < p <-> n < p /\ m < p.
Proof.
 intros; destruct (M.max_spec n m); intuition; order.
Qed.

Lemma max_le_compat_l : forall n m p, n <= m -> max p n <= max p m.
Proof.
 intros.
 destruct (M.max_spec p n) as [(LT,E)|(LE,E)]; rewrite E.
 assert (LE' := le_max_r p m). order.
 apply le_max_l.
Qed.

Lemma max_le_compat_r : forall n m p, n <= m -> max n p <= max m p.
Proof.
 intros. rewrite (max_comm n p), (max_comm m p).
 auto using max_le_compat_l.
Qed.

Lemma max_le_compat : forall n m p q, n <= m -> p <= q ->
 max n p <= max m q.
Proof.
 intros  n m p q Hnm Hpq.
 assert (LE := max_le_compat_l _ _ m Hpq).
 assert (LE' := max_le_compat_r _ _ p Hnm).
 order.
Qed.

End MaxProperties.


(** ** Properties concernant [min], then both [min] and [max].

   To avoid duplication of code, we exploit that [min] can be
   seen as a [max] of the reversed order.
*)

Module MinMaxProperties (Import O:OrderedTypeFull)(Import M:HasMinMax O).
 Include MaxProperties O M.

 Module ORev := OrderedTypeRev O.
 Module MRev <: HasMax ORev.
  Definition max x y := M.min y x.
  Definition max_spec x y := M.min_spec y x.
 End MRev.
 Module MPRev := MaxProperties ORev MRev.

Instance min_compat : Proper (eq==>eq==>eq) min.
Proof. intros x x' Hx y y' Hy. apply MPRev.max_compat; assumption. Qed.

Lemma min_spec : forall n m,
 (n < m /\ min n m == n) \/ (m <= n /\ min n m == m).
Proof. exact min_spec. Qed.

Lemma min_spec_le : forall n m,
 (n <= m /\ min n m == n) \/ (m <= n /\ min n m == m).
Proof. intros. exact (MPRev.max_spec_le m n). Qed.

Lemma min_case_strong : forall n m (P:O.t -> Type),
 (forall x y, x == y -> P x -> P y) ->
 (n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
Proof. intros. apply (MPRev.max_case_strong m n P); auto. Qed.

Lemma min_case : forall n m (P:O.t -> Type),
  (forall x y, x == y -> P x -> P y) ->
  P n -> P m -> P (min n m).
Proof. intros. apply min_case_strong; auto. Defined.

Lemma min_dec : forall n m, {min n m == n} + {min n m == m}.
Proof.
 intros. destruct (MPRev.max_dec m n); [right|left]; assumption.
Defined.

Lemma min_monotone: forall f,
 (Proper (eq ==> eq) f) ->
 (Proper (le ==> le) f) ->
 forall x y, min (f x) (f y) == f (min x y).
Proof.
 intros. apply MPRev.max_monotone; auto. compute in *; eauto.
Qed.

Lemma min_unicity : forall n m p,
 ((n < m /\ p == n)  \/ (m <= n /\ p == m)) ->  p == min n m.
Proof. intros n m p. apply MPRev.max_unicity. Qed.

Lemma min_unicity_ext : forall f,
 (forall n m, (n < m /\ f n m == n)  \/ (m <= n /\ f n m == m)) ->
 (forall n m, f n m == min n m).
Proof. intros f H n m. apply MPRev.max_unicity, H; auto. Qed.

Lemma min_id : forall n, min n n == n.
Proof. intros. exact (MPRev.max_id n). Qed.

Lemma min_assoc : forall m n p, min m (min n p) == min (min m n) p.
Proof. intros. symmetry; apply MPRev.max_assoc. Qed.

Lemma min_comm : forall n m, min n m == min m n.
Proof. intros. exact (MPRev.max_comm m n). Qed.

Lemma min_l : forall n m, n <= m -> min n m == n.
Proof. intros n m. exact (MPRev.max_r m n). Qed.

Lemma min_r : forall n m, m <= n -> min n m == m.
Proof. intros n m. exact (MPRev.max_l m n). Qed.

Lemma le_min_r : forall n m, min n m <= m.
Proof. intros. exact (MPRev.le_max_l m n). Qed.

Lemma le_min_l : forall n m, min n m <= n.
Proof. intros. exact (MPRev.le_max_r m n). Qed.

Lemma min_le : forall n m p, min n m <= p -> n <= p \/ m <= p.
Proof. intros n m p H. destruct (MPRev.max_le _ _ _ H); auto. Qed.

Lemma min_le_iff : forall n m p, min n m <= p <-> n <= p \/ m <= p.
Proof. intros n m p. rewrite (MPRev.max_le_iff m n p); intuition. Qed.

Lemma min_lt_iff : forall n m p, min n m < p <-> n < p \/ m < p.
Proof. intros n m p. rewrite (MPRev.max_lt_iff m n p); intuition. Qed.

Lemma min_glb_l : forall n m p, p <= min n m -> p <= n.
Proof. intros n m. exact (MPRev.max_lub_r m n). Qed.

Lemma min_glb_r : forall n m p, p <= min n m -> p <= m.
Proof. intros n m. exact (MPRev.max_lub_l m n). Qed.

Lemma min_glb : forall n m p, p <= n -> p <= m -> p <= min n m.
Proof. intros. apply MPRev.max_lub; auto. Qed.

Lemma min_glb_iff : forall n m p, p <= min n m <-> p <= n /\ p <= m.
Proof. intros. rewrite (MPRev.max_lub_iff m n p); intuition. Qed.

Lemma min_glb_lt : forall n m p, p < n -> p < m -> p < min n m.
Proof. intros. apply MPRev.max_lub_lt; auto. Qed.

Lemma min_glb_lt_iff : forall n m p, p < min n m <-> p < n /\ p < m.
Proof. intros. rewrite (MPRev.max_lub_lt_iff m n p); intuition. Qed.

Lemma min_le_compat_l : forall n m p, n <= m -> min p n <= min p m.
Proof. intros n m. exact (MPRev.max_le_compat_r m n). Qed.

Lemma min_le_compat_r : forall n m p, n <= m -> min n p <= min m p.
Proof. intros n m. exact (MPRev.max_le_compat_l m n). Qed.

Lemma min_le_compat : forall n m p q, n <= m -> p <= q ->
 min n p <= min m q.
Proof. intros. apply MPRev.max_le_compat; auto. Qed.


(** *** Combined properties of min and max *)

Lemma min_max_absorption : forall n m, max n (min n m) == n.
Proof.
 intros.
 destruct (M.min_spec n m) as [(C,E)|(C,E)]; rewrite E.
 apply max_l. OF.order.
 destruct (M.max_spec n m); intuition; OF.order.
Qed.

Lemma max_min_absorption : forall n m, min n (max n m) == n.
Proof.
 intros.
 destruct (M.max_spec n m) as [(C,E)|(C,E)]; rewrite E.
 destruct (M.min_spec n m) as [(C',E')|(C',E')]; auto. OF.order.
 apply min_l; auto. OF.order.
Qed.

(** Distributivity *)

Lemma max_min_distr : forall n m p,
 max n (min m p) == min (max n m) (max n p).
Proof.
 intros. symmetry. apply min_monotone.
 eauto with *.
 repeat red; intros. apply max_le_compat_l; auto.
Qed.

Lemma min_max_distr : forall n m p,
 min n (max m p) == max (min n m) (min n p).
Proof.
 intros. symmetry. apply max_monotone.
 eauto with *.
 repeat red; intros. apply min_le_compat_l; auto.
Qed.

(** Modularity *)

Lemma max_min_modular : forall n m p,
 max n (min m (max n p)) == min (max n m) (max n p).
Proof.
 intros. rewrite <- max_min_distr.
 destruct (max_spec n p) as [(C,E)|(C,E)]; rewrite E. reflexivity.
 destruct (min_spec m n) as [(C',E')|(C',E')]; rewrite E'.
 rewrite 2 max_l; try OF.order. rewrite min_le_iff; auto.
 rewrite 2 max_l; try OF.order. rewrite min_le_iff; auto.
Qed.

Lemma min_max_modular : forall n m p,
 min n (max m (min n p)) == max (min n m) (min n p).
Proof.
 intros. rewrite <- min_max_distr.
 destruct (min_spec n p) as [(C,E)|(C,E)]; rewrite E.
 destruct (max_spec m n) as [(C',E')|(C',E')]; rewrite E'.
 rewrite 2 min_l; try OF.order. rewrite max_le_iff; right; OF.order.
 rewrite 2 min_l; try OF.order. rewrite max_le_iff; auto. reflexivity.
Qed.

(** Disassociativity *)

Lemma max_min_disassoc : forall n m p,
 min n (max m p) <= max (min n m) p.
Proof.
 intros. rewrite min_max_distr.
 auto using max_le_compat_l, le_min_r.
Qed.

(** Anti-monotonicity swaps the role of [min] and [max] *)

Lemma max_min_antimonotone : forall f,
 Proper (eq==>eq) f ->
 Proper (le==>inverse le) f ->
 forall x y, max (f x) (f y) == f (min x y).
Proof.
 intros f Eqf Lef x y.
 destruct (M.min_spec x y) as [(H,E)|(H,E)]; rewrite E;
  destruct (M.max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
 assert (f y <= f x) by (apply Lef; OF.order). OF.order.
 assert (f x <= f y) by (apply Lef; OF.order). OF.order.
Qed.


Lemma min_max_antimonotone : forall f,
 Proper (eq==>eq) f ->
 Proper (le==>inverse le) f ->
 forall x y, min (f x) (f y) == f (max x y).
Proof.
 intros f Eqf Lef x y.
 destruct (M.max_spec x y) as [(H,E)|(H,E)]; rewrite E;
  destruct (M.min_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
 assert (f y <= f x) by (apply Lef; OF.order). OF.order.
 assert (f x <= f y) by (apply Lef; OF.order). OF.order.
Qed.

End MinMaxProperties.



(** TODO: Some Remaining questions...

--> Compare with a type-classes version ?

--> Is max_unicity and max_unicity_ext really convenient to express
    that any possible definition of max will in fact be equivalent ?

--> Is it possible to avoid copy-paste about min even more ?

*)