1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
Require Export RelationClasses.
Require Import Bool Morphisms Setoid.
Set Implicit Arguments.
Unset Strict Implicit.
(** Structure with nothing inside.
Used to force a module type T into a module via Nop <+ T. (HACK!) *)
Module Type Nop.
End Nop.
(** * Structure with just a base type [t] *)
Module Type Typ.
Parameter Inline(10) t : Type.
End Typ.
(** * Structure with an equality relation [eq] *)
Module Type HasEq (Import T:Typ).
Parameter Inline(30) eq : t -> t -> Prop.
End HasEq.
Module Type Eq := Typ <+ HasEq.
Module Type EqNotation (Import E:Eq).
Infix "==" := eq (at level 70, no associativity).
Notation "x ~= y" := (~eq x y) (at level 70, no associativity).
End EqNotation.
Module Type Eq' := Eq <+ EqNotation.
(** * Specification of the equality via the [Equivalence] type class *)
Module Type IsEq (Import E:Eq).
Declare Instance eq_equiv : Equivalence eq.
End IsEq.
(** * Earlier specification of equality by three separate lemmas. *)
Module Type IsEqOrig (Import E:Eq').
Axiom eq_refl : forall x : t, x==x.
Axiom eq_sym : forall x y : t, x==y -> y==x.
Axiom eq_trans : forall x y z : t, x==y -> y==z -> x==z.
Hint Immediate eq_sym.
Hint Resolve eq_refl eq_trans.
End IsEqOrig.
(** * Types with decidable equality *)
Module Type HasEqDec (Import E:Eq').
Parameter eq_dec : forall x y : t, { x==y } + { ~ x==y }.
End HasEqDec.
(** * Boolean Equality *)
(** Having [eq_dec] is the same as having a boolean equality plus
a correctness proof. *)
Module Type HasEqb (Import T:Typ).
Parameter Inline eqb : t -> t -> bool.
End HasEqb.
Module Type EqbSpec (T:Typ)(X:HasEq T)(Y:HasEqb T).
Parameter eqb_eq : forall x y, Y.eqb x y = true <-> X.eq x y.
End EqbSpec.
Module Type EqbNotation (T:Typ)(E:HasEqb T).
Infix "=?" := E.eqb (at level 70, no associativity).
End EqbNotation.
Module Type HasEqBool (E:Eq) := HasEqb E <+ EqbSpec E E.
(** From these basic blocks, we can build many combinations
of static standalone module types. *)
Module Type EqualityType := Eq <+ IsEq.
Module Type EqualityTypeOrig := Eq <+ IsEqOrig.
Module Type EqualityTypeBoth <: EqualityType <: EqualityTypeOrig
:= Eq <+ IsEq <+ IsEqOrig.
Module Type DecidableType <: EqualityType
:= Eq <+ IsEq <+ HasEqDec.
Module Type DecidableTypeOrig <: EqualityTypeOrig
:= Eq <+ IsEqOrig <+ HasEqDec.
Module Type DecidableTypeBoth <: DecidableType <: DecidableTypeOrig
:= EqualityTypeBoth <+ HasEqDec.
Module Type BooleanEqualityType <: EqualityType
:= Eq <+ IsEq <+ HasEqBool.
Module Type BooleanDecidableType <: DecidableType <: BooleanEqualityType
:= Eq <+ IsEq <+ HasEqDec <+ HasEqBool.
Module Type DecidableTypeFull <: DecidableTypeBoth <: BooleanDecidableType
:= Eq <+ IsEq <+ IsEqOrig <+ HasEqDec <+ HasEqBool.
(** Same, with notation for [eq] *)
Module Type EqualityType' := EqualityType <+ EqNotation.
Module Type EqualityTypeOrig' := EqualityTypeOrig <+ EqNotation.
Module Type EqualityTypeBoth' := EqualityTypeBoth <+ EqNotation.
Module Type DecidableType' := DecidableType <+ EqNotation.
Module Type DecidableTypeOrig' := DecidableTypeOrig <+ EqNotation.
Module Type DecidableTypeBoth' := DecidableTypeBoth <+ EqNotation.
Module Type BooleanEqualityType' :=
BooleanEqualityType <+ EqNotation <+ EqbNotation.
Module Type BooleanDecidableType' :=
BooleanDecidableType <+ EqNotation <+ EqbNotation.
Module Type DecidableTypeFull' := DecidableTypeFull <+ EqNotation.
(** * Compatibility wrapper from/to the old version of
[EqualityType] and [DecidableType] *)
Module BackportEq (E:Eq)(F:IsEq E) <: IsEqOrig E.
Definition eq_refl := F.eq_equiv.(@Equivalence_Reflexive _ _).
Definition eq_sym := F.eq_equiv.(@Equivalence_Symmetric _ _).
Definition eq_trans := F.eq_equiv.(@Equivalence_Transitive _ _).
End BackportEq.
Module UpdateEq (E:Eq)(F:IsEqOrig E) <: IsEq E.
Instance eq_equiv : Equivalence E.eq.
Proof. exact (Build_Equivalence _ F.eq_refl F.eq_sym F.eq_trans). Qed.
End UpdateEq.
Module Backport_ET (E:EqualityType) <: EqualityTypeBoth
:= E <+ BackportEq.
Module Update_ET (E:EqualityTypeOrig) <: EqualityTypeBoth
:= E <+ UpdateEq.
Module Backport_DT (E:DecidableType) <: DecidableTypeBoth
:= E <+ BackportEq.
Module Update_DT (E:DecidableTypeOrig) <: DecidableTypeBoth
:= E <+ UpdateEq.
(** * Having [eq_dec] is equivalent to having [eqb] and its spec. *)
Module HasEqDec2Bool (E:Eq)(F:HasEqDec E) <: HasEqBool E.
Definition eqb x y := if F.eq_dec x y then true else false.
Lemma eqb_eq : forall x y, eqb x y = true <-> E.eq x y.
Proof.
intros x y. unfold eqb. destruct F.eq_dec as [EQ|NEQ].
auto with *.
split. discriminate. intro EQ; elim NEQ; auto.
Qed.
End HasEqDec2Bool.
Module HasEqBool2Dec (E:Eq)(F:HasEqBool E) <: HasEqDec E.
Lemma eq_dec : forall x y, {E.eq x y}+{~E.eq x y}.
Proof.
intros x y. assert (H:=F.eqb_eq x y).
destruct (F.eqb x y); [left|right].
apply -> H; auto.
intro EQ. apply H in EQ. discriminate.
Defined.
End HasEqBool2Dec.
Module Dec2Bool (E:DecidableType) <: BooleanDecidableType
:= E <+ HasEqDec2Bool.
Module Bool2Dec (E:BooleanEqualityType) <: BooleanDecidableType
:= E <+ HasEqBool2Dec.
(** Some properties of boolean equality *)
Module BoolEqualityFacts (Import E : BooleanEqualityType').
(** [eqb] is compatible with [eq] *)
Instance eqb_compat : Proper (E.eq ==> E.eq ==> Logic.eq) eqb.
Proof.
intros x x' Exx' y y' Eyy'.
apply eq_true_iff_eq.
now rewrite 2 eqb_eq, Exx', Eyy'.
Qed.
(** Alternative specification of [eqb] based on [reflect]. *)
Lemma eqb_spec x y : reflect (x==y) (x =? y).
Proof.
apply iff_reflect. symmetry. apply eqb_eq.
Defined.
(** Negated form of [eqb_eq] *)
Lemma eqb_neq x y : (x =? y) = false <-> x ~= y.
Proof.
now rewrite <- not_true_iff_false, eqb_eq.
Qed.
(** Basic equality laws for [eqb] *)
Lemma eqb_refl x : (x =? x) = true.
Proof.
now apply eqb_eq.
Qed.
Lemma eqb_sym x y : (x =? y) = (y =? x).
Proof.
apply eq_true_iff_eq. now rewrite 2 eqb_eq.
Qed.
(** Transitivity is a particular case of [eqb_compat] *)
End BoolEqualityFacts.
(** * UsualDecidableType
A particular case of [DecidableType] where the equality is
the usual one of Coq. *)
Module Type HasUsualEq (Import T:Typ) <: HasEq T.
Definition eq := @Logic.eq t.
End HasUsualEq.
Module Type UsualEq <: Eq := Typ <+ HasUsualEq.
Module Type UsualIsEq (E:UsualEq) <: IsEq E.
(* No Instance syntax to avoid saturating the Equivalence tables *)
Definition eq_equiv : Equivalence E.eq := eq_equivalence.
End UsualIsEq.
Module Type UsualIsEqOrig (E:UsualEq) <: IsEqOrig E.
Definition eq_refl := @Logic.eq_refl E.t.
Definition eq_sym := @Logic.eq_sym E.t.
Definition eq_trans := @Logic.eq_trans E.t.
End UsualIsEqOrig.
Module Type UsualEqualityType <: EqualityType
:= UsualEq <+ UsualIsEq.
Module Type UsualDecidableType <: DecidableType
:= UsualEq <+ UsualIsEq <+ HasEqDec.
Module Type UsualDecidableTypeOrig <: DecidableTypeOrig
:= UsualEq <+ UsualIsEqOrig <+ HasEqDec.
Module Type UsualDecidableTypeBoth <: DecidableTypeBoth
:= UsualEq <+ UsualIsEq <+ UsualIsEqOrig <+ HasEqDec.
Module Type UsualBoolEq := UsualEq <+ HasEqBool.
Module Type UsualDecidableTypeFull <: DecidableTypeFull
:= UsualEq <+ UsualIsEq <+ UsualIsEqOrig <+ HasEqDec <+ HasEqBool.
(** Some shortcuts for easily building a [UsualDecidableType] *)
Module Type MiniDecidableType.
Include Typ.
Parameter eq_dec : forall x y : t, {x=y}+{~x=y}.
End MiniDecidableType.
Module Make_UDT (M:MiniDecidableType) <: UsualDecidableTypeBoth
:= M <+ HasUsualEq <+ UsualIsEq <+ UsualIsEqOrig.
Module Make_UDTF (M:UsualBoolEq) <: UsualDecidableTypeFull
:= M <+ UsualIsEq <+ UsualIsEqOrig <+ HasEqBool2Dec.
|