1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import List Multiset Permutation Relations.
Set Implicit Arguments.
Section defs.
Variable A : Type.
Variable leA : relation A.
Variable eqA : relation A.
Let gtA (x y:A) := ~ leA x y.
Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.
Hint Resolve leA_refl.
Hint Immediate eqA_dec leA_dec leA_antisym.
Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.
(** [lelistA] *)
Inductive lelistA (a:A) : list A -> Prop :=
| nil_leA : lelistA a nil
| cons_leA : forall (b:A) (l:list A), leA a b -> lelistA a (b :: l).
Lemma lelistA_inv : forall (a b:A) (l:list A), lelistA a (b :: l) -> leA a b.
Proof.
intros; inversion H; trivial with datatypes.
Qed.
(** * Definition for a list to be sorted *)
Inductive sort : list A -> Prop :=
| nil_sort : sort nil
| cons_sort :
forall (a:A) (l:list A), sort l -> lelistA a l -> sort (a :: l).
Lemma sort_inv :
forall (a:A) (l:list A), sort (a :: l) -> sort l /\ lelistA a l.
Proof.
intros; inversion H; auto with datatypes.
Qed.
Lemma sort_rect :
forall P:list A -> Type,
P nil ->
(forall (a:A) (l:list A), sort l -> P l -> lelistA a l -> P (a :: l)) ->
forall y:list A, sort y -> P y.
Proof.
simple induction y; auto with datatypes.
intros; elim (sort_inv (a:=a) (l:=l)); auto with datatypes.
Qed.
Lemma sort_rec :
forall P:list A -> Set,
P nil ->
(forall (a:A) (l:list A), sort l -> P l -> lelistA a l -> P (a :: l)) ->
forall y:list A, sort y -> P y.
Proof.
simple induction y; auto with datatypes.
intros; elim (sort_inv (a:=a) (l:=l)); auto with datatypes.
Qed.
(** * Merging two sorted lists *)
Inductive merge_lem (l1 l2:list A) : Type :=
merge_exist :
forall l:list A,
sort l ->
meq (list_contents _ eqA_dec l)
(munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2)) ->
(forall a:A, lelistA a l1 -> lelistA a l2 -> lelistA a l) ->
merge_lem l1 l2.
Lemma merge :
forall l1:list A, sort l1 -> forall l2:list A, sort l2 -> merge_lem l1 l2.
Proof.
simple induction 1; intros.
apply merge_exist with l2; auto with datatypes.
elim H2; intros.
apply merge_exist with (a :: l); simpl in |- *; auto using cons_sort with datatypes.
elim (leA_dec a a0); intros.
(* 1 (leA a a0) *)
cut (merge_lem l (a0 :: l0)); auto using cons_sort with datatypes.
intros [l3 l3sorted l3contents Hrec].
apply merge_exist with (a :: l3); simpl in |- *;
auto using cons_sort, cons_leA with datatypes.
apply meq_trans with
(munion (singletonBag a)
(munion (list_contents _ eqA_dec l)
(list_contents _ eqA_dec (a0 :: l0)))).
apply meq_right; trivial with datatypes.
apply meq_sym; apply munion_ass.
intros; apply cons_leA.
apply lelistA_inv with l; trivial with datatypes.
(* 2 (leA a0 a) *)
elim X0; simpl in |- *; intros.
apply merge_exist with (a0 :: l3); simpl in |- *;
auto using cons_sort, cons_leA with datatypes.
apply meq_trans with
(munion (singletonBag a0)
(munion (munion (singletonBag a) (list_contents _ eqA_dec l))
(list_contents _ eqA_dec l0))).
apply meq_right; trivial with datatypes.
apply munion_perm_left.
intros; apply cons_leA; apply lelistA_inv with l0; trivial with datatypes.
Qed.
End defs.
Unset Implicit Arguments.
Hint Constructors sort: datatypes v62.
Hint Constructors lelistA: datatypes v62.
|