aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Sorting/PermutSetoid.v
blob: 1f1ecddcd913bac42fb532adc3ad7ae34cd2af34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

Require Import Omega Relations Multiset Permutation SetoidList.

Set Implicit Arguments.

(** This file contains additional results about permutations
     with respect to a setoid equality (i.e. an equivalence relation).
*)

Section Perm.

Variable A : Type.
Variable eqA : relation A.
Hypothesis eqA_equiv : Equivalence eqA.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.

Notation permutation := (permutation _ eqA_dec).
Notation list_contents := (list_contents _ eqA_dec).

(** we can use [multiplicity] to define [InA] and [NoDupA]. *)

Fact if_eqA_then : forall a a' (B:Type)(b b':B),
 eqA a a' -> (if eqA_dec a a' then b else b') = b.
Proof.
  intros. destruct eqA_dec as [_|NEQ]; auto.
  contradict NEQ; auto.
Qed.

Fact if_eqA_else : forall a a' (B:Type)(b b':B),
 ~eqA a a' -> (if eqA_dec a a' then b else b') = b'.
Proof.
  intros. decide (eqA_dec a a') with H; auto.
Qed.

Fact if_eqA_refl : forall a (B:Type)(b b':B),
 (if eqA_dec a a then b else b') = b.
Proof.
  intros; apply (decide_left (eqA_dec a a)); auto with *.
Qed.

(** PL: Inutilisable dans un rewrite sans un change prealable. *)

Global Instance if_eqA (B:Type)(b b':B) :
 Proper (eqA==>eqA==>@eq _) (fun x y => if eqA_dec x y then b else b').
Proof.
 intros B b b' x x' Hxx' y y' Hyy'.
 intros; destruct (eqA_dec x y) as [H|H];
  destruct (eqA_dec x' y') as [H'|H']; auto.
 contradict H'; transitivity x; auto with *; transitivity y; auto with *.
 contradict H; transitivity x'; auto with *; transitivity y'; auto with *.
Qed.

Fact if_eqA_rewrite_l : forall a1 a1' a2 (B:Type)(b b':B),
 eqA a1 a1' -> (if eqA_dec a1 a2 then b else b') =
               (if eqA_dec a1' a2 then b else b').
Proof.
 intros; destruct (eqA_dec a1 a2) as [A1|A1];
  destruct (eqA_dec a1' a2) as [A1'|A1']; auto.
 contradict A1'; transitivity a1; eauto with *.
 contradict A1; transitivity a1'; eauto with *.
Qed.

Fact if_eqA_rewrite_r : forall a1 a2 a2' (B:Type)(b b':B),
 eqA a2 a2' -> (if eqA_dec a1 a2 then b else b') =
               (if eqA_dec a1 a2' then b else b').
Proof.
 intros; destruct (eqA_dec a1 a2) as [A2|A2];
  destruct (eqA_dec a1 a2') as [A2'|A2']; auto.
 contradict A2'; transitivity a2; eauto with *.
 contradict A2; transitivity a2'; eauto with *.
Qed.


Global Instance multiplicity_eqA (l:list A) :
 Proper (eqA==>@eq _) (multiplicity (list_contents l)).
Proof.
  intros l x x' Hxx'.
  induction l as [|y l Hl]; simpl; auto.
  rewrite (@if_eqA_rewrite_r y x x'); auto.
Qed.

Lemma multiplicity_InA :
  forall l a, InA eqA a l <-> 0 < multiplicity (list_contents l) a.
Proof.
  induction l.
  simpl.
  split; inversion 1.
  simpl.
  intros a'; split; intros H. inversion_clear H.
  apply (decide_left (eqA_dec a a')); auto with *.
  destruct (eqA_dec a a'); auto with *. simpl; rewrite <- IHl; auto.
  destruct (eqA_dec a a'); auto with *. right. rewrite IHl; auto.
Qed.

Lemma multiplicity_InA_O :
  forall l a, ~ InA eqA a l -> multiplicity (list_contents l) a = 0.
Proof.
  intros l a; rewrite multiplicity_InA;
    destruct (multiplicity (list_contents l) a); auto with arith.
  destruct 1; auto with arith.
Qed.

Lemma multiplicity_InA_S :
  forall l a, InA eqA a l -> multiplicity (list_contents l) a >= 1.
Proof.
  intros l a; rewrite multiplicity_InA; auto with arith.
Qed.

Lemma multiplicity_NoDupA : forall l,
  NoDupA eqA l <-> (forall a, multiplicity (list_contents l) a <= 1).
Proof.
  induction l.
  simpl.
  split; auto with arith.
  split; simpl.
  inversion_clear 1.
  rewrite IHl in H1.
  intros; destruct (eqA_dec a a0) as [EQ|NEQ]; simpl; auto with *.
  rewrite <- EQ.
  rewrite multiplicity_InA_O; auto.
  intros; constructor.
  rewrite multiplicity_InA.
  specialize (H a).
  rewrite if_eqA_refl in H.
  clear IHl; omega.
  rewrite IHl; intros.
  specialize (H a0); auto with *.
  destruct (eqA_dec a a0); simpl; auto with *.
Qed.


(** Permutation is compatible with InA. *)
Lemma permut_InA_InA :
  forall l1 l2 e, permutation l1 l2 -> InA eqA e l1 -> InA eqA e l2.
Proof.
  intros l1 l2 e.
  do 2 rewrite multiplicity_InA.
  unfold Permutation.permutation, meq.
  intros H;rewrite H; auto.
Qed.

Lemma permut_cons_InA :
  forall l1 l2 e, permutation (e :: l1) l2 -> InA eqA e l2.
Proof.
  intros; apply (permut_InA_InA (e:=e) H); auto with *.
Qed.

(** Permutation of an empty list. *)
Lemma permut_nil :
  forall l, permutation l nil -> l = nil.
Proof.
  intro l; destruct l as [ | e l ]; trivial.
  assert (InA eqA e (e::l)) by (auto with *).
  intro Abs; generalize (permut_InA_InA Abs H).
  inversion 1.
Qed.

(** Permutation for short lists. *)

Lemma permut_length_1:
  forall a b, permutation (a :: nil) (b :: nil)  -> eqA a b.
Proof.
  intros a b; unfold Permutation.permutation, meq.
  intro P; specialize (P b); simpl in *.
  rewrite if_eqA_refl in *.
  destruct (eqA_dec a b); simpl; auto; discriminate.
Qed.

Lemma permut_length_2 :
  forall a1 b1 a2 b2, permutation (a1 :: b1 :: nil) (a2 :: b2 :: nil) ->
    (eqA a1 a2) /\ (eqA b1 b2) \/ (eqA a1 b2) /\ (eqA a2 b1).
Proof.
  intros a1 b1 a2 b2 P.
  assert (H:=permut_cons_InA P).
  inversion_clear H.
  left; split; auto.
  apply permut_length_1.
  red; red; intros.
  specialize (P a). simpl in *.
  rewrite (@if_eqA_rewrite_l a1 a2 a) in P by auto.
  (** Bug omega: le "set" suivant ne devrait pas etre necessaire *)
  set (u:= if eqA_dec a2 a then 1 else 0) in *; omega.
  right.
  inversion_clear H0; [|inversion H].
  split; auto.
  apply permut_length_1.
  red; red; intros.
  specialize (P a); simpl in *.
  rewrite (@if_eqA_rewrite_l a1 b2 a) in P by auto.
  (** Bug omega: idem *)
  set (u:= if eqA_dec b2 a then 1 else 0) in *; omega.
Qed.

(** Permutation is compatible with length. *)
Lemma permut_length :
  forall l1 l2, permutation l1 l2 -> length l1 = length l2.
Proof.
  induction l1; intros l2 H.
  rewrite (permut_nil (permut_sym H)); auto.
  assert (H0:=permut_cons_InA H).
  destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
  subst l2.
  rewrite app_length.
  simpl; rewrite <- plus_n_Sm; f_equal.
  rewrite <- app_length.
  apply IHl1.
  apply permut_remove_hd with b.
  apply permut_tran with (a::l1); auto.
  revert H1; unfold Permutation.permutation, meq; simpl.
  intros; f_equal; auto.
  rewrite (@if_eqA_rewrite_l a b a0); auto.
Qed.

Lemma NoDupA_equivlistA_permut :
  forall l l', NoDupA eqA l -> NoDupA eqA l' ->
    equivlistA eqA l l' -> permutation l l'.
Proof.
  intros.
  red; unfold meq; intros.
  rewrite multiplicity_NoDupA in H, H0.
  generalize (H a) (H0 a) (H1 a); clear H H0 H1.
  do 2 rewrite multiplicity_InA.
  destruct 3; omega.
Qed.


Variable B : Type.
Variable eqB : B->B->Prop.
Variable eqB_dec : forall x y:B, { eqB x y }+{ ~eqB x y }.
Variable eqB_trans : Transitive eqB.


(** Permutation is compatible with map. *)

Lemma permut_map :
  forall f,
    (Proper (eqA==>eqB) f) ->
    forall l1 l2, permutation l1 l2 ->
      Permutation.permutation _ eqB_dec (map f l1) (map f l2).
Proof.
  intros f; induction l1.
  intros l2 P; rewrite (permut_nil (permut_sym P)); apply permut_refl.
  intros l2 P.
  simpl.
  assert (H0:=permut_cons_InA P).
  destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
  subst l2.
  rewrite map_app.
  simpl.
  apply permut_tran with (f b :: map f l1).
  revert H1; unfold Permutation.permutation, meq; simpl.
  intros; f_equal; auto.
  destruct (eqB_dec (f b) a0) as [H2|H2];
    destruct (eqB_dec (f a) a0) as [H3|H3]; auto.
  destruct H3; transitivity (f b); auto with *.
  destruct H2; transitivity (f a); auto with *.
  apply permut_add_cons_inside.
  rewrite <- map_app.
  apply IHl1; auto.
  apply permut_remove_hd with b.
  apply permut_tran with (a::l1); auto.
  revert H1; unfold Permutation.permutation, meq; simpl.
  intros; f_equal; auto.
  rewrite (@if_eqA_rewrite_l a b a0); auto.
Qed.

End Perm.